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What | am interested in

Kernel methods and deep learning
® G. Mialon*, D. Chen*, M. Selosse*, J. Mairal. Structural Graph Transformers (to appear on arXiv).

e G. Mialon*, D. Chen*, A. d'Aspremont, J. Mairal. A Trainable Optimal Transport Embedding for
Feature Aggregation and its Relationship to Attention (ICLR, 2021).

e A Bietti*, G. Mialon*, D. Chen, J. Mairal. A Kernel Perspective for Regularizing Deep Neural
Networks (ICML, 2019).
Convex optimization
® G. Mialon, A. d'Aspremont, J. Mairal. Screening Data Points in Empirical Risk Minimization via

Ellipsoidal Regions and Safe Loss Functions (AISTATS, 2020).

Causal inference
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What | want to talk about today

Kernel methods and transformers
® G. Mialon*, D. Chen*, M. Selosse*, J. Mairal. Structural Graph Transformers (to appear on arXiv).

e G. Mialon*, D. Chen*, A. d'Aspremont, J. Mairal. A Trainable Optimal Transport Embedding for
Feature Aggregation and its Relationship to Attention (ICLR, 2021).

Why kernel methods?
® Reconciling deep learning with small data regimes.

® Understanding architectures with a kernel lens.
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Kernel methods

Learning with Kernel methods
® Map data x to high-dimensional space, ®(x) € H (RKHS).
® & associated to a positive definite kernel K: K(x,x") = (®(x), ®(x"))x (kernel trick).

® Convex optimization for learning linear decision function in the RKHS.
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Transformers, self-attention, and kernel smoothing

Transformers (encoder).

® A sequence of layers processing an input set of di, features X in R"*%  and compute another set
in R dout

® Self-attention mechanism:

T

K
Attention(Q, K, V) = softmax ( @

out

)VER”%“ (1)

with @T = WoX T and KT = WxXT resp. query and key matrices, VT = W\, XT the value
matrix, and W, Wi, Wy, in R%«*dn |earned projection matrices.

® During forward pass, feature map X updated via:
X = X + Attention(Q, K, V).
® | ayerNorm and “element-wise” feed-forward.
G. Mialon (Inria Paris)
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Transformers, self-attention, and kernel smoothing

Self-attention as a kernel smoothing.
® We can rewrite self-attention:

(%)

n exp |

Attention(Q, K, V), = KT V; € R
j= 1 Z v_1exp ( )

_ i (Qn V c Rdout

> -1 (Qn G)

j=1

with k a non-negative kernel function, which can be seen as a kernel smoothing.

Kernel construction.

o Different choices for k suggest different transformers architectures [Tsai et al., 2019].
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Self-attention for large (biological) sequences

Dealing with small datasets of large sequences.
® Sequence: a set of features with 1-D positional information.
® |mportant applications, e.g, protein sequences in bioinformatics.

® | ong-range and potentially complex dependencies between elements.
® Varying size of the sequences.

Biological sequences bring two more problems.
® Long sequences (1000+ base pairs).
® Few labeled data (e.g, 20 samples per class for SCOP1.75).
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Figure 1: Short part of mMRNA sequence for the SARS-Cov-2 spike protein (each symbol represents an
amino-acid).
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Self-attention for large (biological) sequences

Transformers are delicate to use in this setting.
® Attractive inductive bias.
® Small amount of data.

® Memory issues for large sequences (although recently alleviated by the efficient transformers line of
work, see [Tay et al., 2020]).

We propose a self-attention like embedding for sequences [Mialon et al., 2021a].
® Qur embedding will provide a natural notion of pooling.
® The attention weights will be the output of a matching operation.

® We choose optimal transport, as it benefits from a rich theory and efficient solvers.
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Optimal Transport

Distributing mass with minimal cost.
® letain A" (probability simplex) and b in A" be weights of the discrete measures ). a;dy, and
Zj bj(sxj{ with respective locations x and x’, where ¢, is the Dirac at position x.
e Let Cin R™" be a pairwise cost matrix.

® The entropic regularized Kantorovich relaxation of OT from x to x’ is

i C;iP; —eH(P), 2
olmin ; iPij — eH(P) (2)
with H(P) = — > P;(log(P;) — 1) is the entropic regularization with parameter ¢ (controls

sparsity of P), and U is the space of admissible couplings between a and b:
U(a,b) = {P e R™" :P1l,=aand P'1, = b}.

® Typically solved using Sinkhorn's algorithm [Sinkhorn and Knopp, 1967, Cuturi, 2013].

® In practice, a and b will be uniform measures.
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Constructing a self-attention embedding

Optimal Transport Embedding and Kernel. Let X € R"%? a sequence of features. s a p.d. kernel
with associated embedding ¢.

® We define our embedding ®, € RP*9 as
®2(X) = /p x Pu(X, Z) T o(X).

® P,(X,Z) the OT plan between X with cost —+ and a learned reference Z € RP*9 item
o(X) = [p(X1), ..., 0(Xa)] T, with ¢ : R — H

® |ts associated p.d. kernel is

Kz(X,X") = Puz(X, X")5(Xi, X)),
i

with P 2(X, X) == p x Po(X, Z)Pu(X", Z)T.
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Constructing a self-attention embedding

Kernel interpretation of our embedding.
® P, 7z(X,X’): valid transport plan [Peyré and Cuturi, 2019], rough approximation of P, (X, X").
® Kzisa p.d. surrogate for Kot (X, X') = >, ; Pu(X, X");6(X;, X]).
® Kot induces the 2-wasserstein distance and is not p.d. [Rubner et al., 2000].

Getting back to the kernel smoothing formula.

® We replaced % by Pr(X, 2)j.
j=1 i
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Result: a pooled self-attention embedding

® We introduced
d7(X) = Vb x Pu(X, 2) " p(X),
which simultaneously embeds and pools elements of an input sequence.
® Non-linear embedding via .
® Pooling via P,, similar elements are pooled together.
® Natural notion of pooling by choosing p < n.

X1 Sﬁ(xl) W(XQ) e kﬂ(xn)

L

Py
P PZ[! Py P, P’-’p
nl
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Result: a pooled self-attention embedding

Learning our embedding.
® Without supervision: simple k-means for Z and a tractable approximation of ¢ [Mairal, 2016].

® With supervision: back-propagating through a few steps of Sinkhorn iterations for Z. Classical
back-propagation for a tractable approximation of ¢ [Mairal, 2016].

Extensions.
® Relative position encoding.
® Multi-head.
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Experiments

SCOP1.75: Protein fold classification. ~ 20000 samples, ~ 1000 labels, many sequences longer than
1000 base pairs.

Table 1: Classification accuracy (top 1/5/10) on test set for SCOP 1.75 for different unsupervised and
supervised baselines, averaged from 10 different runs. (q references X p supports).

Method ‘ Unsupervised ‘ Supervised

DeepSF [Hou et al., 2019] Not available. 73.0/90.3/94.5

CKN [Chen et al., 2019a] 81.8+0.8/92.8+£0.2/95.04+0.2 84.1+0.1/94.34+0.2/96.44+0.1
RKN [Chen et al., 2019b] Not available. 85.3+0.3/95.04+0.2/96.5+0.1
Set Transformer [Lee et al., 2019] Not available. 79.24+4.6/91.5+1.4/94.3+£0.6
Approximate Rep the Set [Skianis et al., 2020] Not available. 84.5+0.6/94.0+0.4/95.7+0.4
Ours (dot-product instead of OT) 78.2+1.9/93.1+0.7/96.0+0.4 87.54+0.3/95.5+0.2/96.9+0.1
Ours (Unsup.: 1 x 100 / Sup.: 5 x 10) 85.8+0.2/95.3+0.1/96.8+0.1 | 88.7+0.3/95.9+0.2/97.34+0.1
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Discussion

Connection to transformers
® Relationship to efficient transformers [Kitaev et al., 2020].

® Kernel methods vs. few-shot learning with pre-trained models for biological
sequences [Rives et al., 2019].

Code
® Freely available at https://github.com/claying/0TK.
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https://github.com/claying/OTK

Learning on graph data

Graph data are very valuable.
® Proteins in computational biology [Senior et al., 2020].
® Molecules in chemoinformatics [Duvenaud et al., 2015].

® Shapes in computer vision and computer graphics [Verma et al., 2018], etc.

Graph Neural Networks (GNNs).

® QOriginally introduced as an extension of convolutions for graph-structured
data [Scarselli et al., 2008].

® Message passing paradigm in which vectors (messages) are exchanged (passed) between
neighboring nodes whose representations are updated using neural networks.

® Many strategies to aggregate features of neighboring
nodes [Bronstein et al., 2017, Duvenaud et al., 2015].

® De facto architecture for graph structured data.
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Challenging GNNs with Structural Graph Transformers

GNNs and transformers are tightly connected, but...

® GNNs are the standard architecture for learning on graphs. Inductive bias: message passing
between neighbors.

® Transformers: all input elements are allowed to communicate.

® Self-attention layer is permutation invariant, hence the need for structure encoding.

How to provide the transformer with graph structural information?
® Structural Graph Transformers [Mialon et al., 2021b]
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Two mechanisms for providing transformers with graph structural
information

Relative node position encoding.
® Position encoding: adding positional only information to the feature vector of an input node or to
the attentions scores.
® As opposed to sequences or images, encoding positions of the elements in a graph is not trivial.

® [Dwivedi and Bresson, 2021] proposed absolute position encoding strategy based on the
eigenvectors of the Laplacian. Blind spot with respect to transferability between graphs.

Leveraging substructures.

® Substructures: carry local positional information and content, e.g walks, subtrees, graphlets.

® Heavily used within graph kernels [Borgwardt et al., 2020].
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First mechanism: Relative position encoding with kernels on graphs

Spectral graph analysis.

® The Laplacian of a graph with n nodes defined as L = D — A. D is a n x n diagonal matrix of node
degrees and A the adjacency matrix.

® Eigenvalue decomposition L =Y, \ju;u; .

® The eigenvalue \; = u Lu; characterizes the amount of oscillation of the corresponding
eigenvector u; (a function on the nodes).

® For this reason, this decomposition is viewed as the discrete equivalent to the sine/cosine Fourier
basis in R" and associated frequencies.

Remark. Very often, the normalized Laplacian | — D~3AD~? is used instead of L, which does not
change the above interpretation.
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First mechanism: Relative position encoding with kernels on graphs

Kernels on graphs.
® |t is possible to define a family of p.d. kernels on the graph [Smola and Kondor, 2003] by applying
a regularization function r to the spectrum of L.

® We get a rich class of kernels
m

K=Y r(A\)uuf, (3)
i=1
associated with the norm || |2 = Y7 (£:"u;)?/r();) from a reproducing kernel Hilbert space
(RKHS), where r : R — R is a non-increasing function such that smoother functions on the graph
would have smaller norms in the RKHS.
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First mechanism: Relative position encoding with kernels on graphs

Diffusion Kernel [Kondor and Vert, 2004].
® When r()\;) = e AN,

m 6 P
Kp=> e uul =e Pt = lim (/ - L) .

p—-+oo
i=1 p

® Discrete equivalent of the Gaussian kernel, a solution of the heat equation in the continuous
setting, hence its name.

® |Interpretation in terms of diffusion of a substance in the graph, controlled by 5.
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First mechanism: Relative position encoding with kernels on graphs

Figure 3: Diffusion kernel between the nodes of a MUTAG sample graph (8 = 1).
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First mechanism: Relative position encoding with kernels on graphs

Modulating the attention scores.

® Self-attention layer becomes

T

PosAttention(Q, V, K;) = normalize (exp < QQ

out

) © K,> V € R, (4)

with the same @ and V matrices, and K, a kernel on the graph.

® During forward pass, feature map X is updated as follows:
X = X + D~ *PosAttention(Q, V, K,), (5)

with D the matrix of node degrees and K, a kernel on the graph.

Remark. As opposed to absolute position encoding, the model does not rely on the transferability of
eigenvectors between different Laplacians.
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First mechanism: Relative position encoding with kernels on graphs

Back to the kernel smoothing formula.
® We replaced k(Q;, K;) by k(Qi, Kj) x K.(X;, X;).

® As observed in [Tsai et al., 2019] for sequences, this is an approach related to relative positional
encoding [Shaw et al., 2018].
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Second mechanism: Leveraging substructures via kernel embedding of
paths

Graph convolutionnal kernel networks (GCKN) [Chen et al., 2020].

® Let us consider a graph G with n nodes, P(u) the set of paths shorter than or equal to k that
start with node u, and p in Pi(u) will denote the concatenation of all node features encountered
along the path.

® A layer of GCKN defines a feature map X in R"*9 such that

X(w)y= > 4(p),

PEPK(u)

with X(u) the column of X corresponding to node u and v is a d-dimensional embedding of the
path features p.

® We encode a node as the sum of its features and those produced by one GCKN layer.
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SGT is able to outperform popular GNNs

Method / Dataset | MUTAG | PROTEINS | PTC | NCII | ZINC (no edge feat.)
Size 188 1113 344 4110 12k
Max. number of nodes 28 620 109 111 37

GCN [Kipf and Welling, 2017] | 78.9+10.1 | 75.84£55 | 54.046.3 | 75.9+1.6 0.36740.011
GAT [Velitkovi¢ et al., 2018] 80.3£8.5 | 74.844.1 | 55.046.0 | 76.8+2.1 0.38440.007
GIN [Xu et al., 2019] 82.6£6.2 | 73.1+4.6 | 55.048.7 | 8L.7+1.7 0.38740.015
[Dwivedi and Bresson, 2021] | 83.946.5 | 70.1+32 | 57.7#3.1 | 80.0+1.9 |  0.323+0.013
Transformers (T) 82.246.3 | 75.6+4.9 | 58.1+£10.5 | 70.0+4.5 0.696-:0.007
T + LapPE 85.84£5.9 | 74.6£2.7 | 55.6+£5.0 | 74.6+£1.9 0.507-£0.003
T + Adj PE 87.249.8 | 724449 | 59.94£59 | 79.7+2.0 0.24340.005
T + 2-step RW kernel 85.3£6.9 | 72.8£4.5 | 62.0£9.4 | 78.0+15 0.24340.010
T + 3-step RW kernel 83.3£6.3 | 76.2+4.4 | 61.046.2 | 77.6+3.6 0.24440.011
T + Diffusion kernel 82.7£7.6 | 74.6£4.2 | 59.1£7.4 | 78.9+1.6 0.255::0.010
T + GCKN 84.4+£7.8 | 69.5£3.8 | 61.5+£5.8 | 78.1+5.1 0.27440.011
T + GCKN + 2-step RW kernel | 90.4+5.8 | 72.5+4.6 | 584+7.6 | 81.0+1.8 0.213+0.016
T + GCKN + Adj PE 90.5+7.0 | 71.1+£6.9 | 57.9+4.2 | 81.4+2.2 0.211+0.010
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Patterns captured in the attention scores of SGT

Layer 3
10 15

20 25

Nitrothiophene-formamidebenzene

Figure 4: A molecule from the Mutagenicity data set [Kersting et al., 2016]. The attention scores are averaged
by heads. Left: node 9 (C of aromatic cycle) is salient. Right: nodes 8 (N of NO2) and 17 (C of CH3) are
salient. NO; is known for its mutagenetic properties.
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Conclusions

Kernel methods
® Reconciles deep learning with small data regimes.

® Understanding architectures via a new lens.

Optimal Transport Embedding

® Dealing with long sequences with few data.

® Connection to the recent line of work efficient transformers.

® Challenged by few-shot learning with pre-trained models.

Structural Graph Transformers
® Inductive bias of transformers is valid with graph.

® Attention provides promising intepretation tools.
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