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Context

• To screen := running a “simple” test to discard useless variables in a data set before
running an optimization algorithm.

• Seminal work by [El Ghaoui et al., 2010] for the Lasso. From KKT conditions and
geometry of the Lasso, design a screening test consisting in checking an inequality on the
dual variable for a set containing the optimal dual variable.

• Applications: memory gains; dynamic rules [Fercoq et al., 2015] (screening performed as
the optimization algorithm proceeds) speeding up convergence.

• The test can be problem-specific or generic.

• Scarce litterature for sample screening.

We propose a new, generic way to design tests for sample screening.
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Context

In supervised learning, the goal is to learn a prediction function h given labeled training data
(ai , bi )i=1,...,n with ai ∈ Rp, and bi ∈ R:

min
h∈H

1

n

n∑
i=1

f (h(ai ), bi )︸ ︷︷ ︸
Empirical risk, data fit

+ λR(h)︸ ︷︷ ︸
Regularization

.

In many applications, f is convex and h is linear, i.e. h(ai ) = x>ai (in what follows, we do not
use an intercept without loss of generality).
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Context

By introducing the margin t defined as ti = x>ai − bi (regression) or t = bix
>ai

(classification), the problem becomes

min
x∈Rp ,t∈Rn

1

n

n∑
i=1

f (ti ) + λR(x) (1)

s.t t = diag(b)Ax ,

with

f (t) =

{
max (1− t, 0) (SVMs)
log (exp−t +1) (Logistic Regression),

R(x) =

{
1
2‖x‖

2
2 in general,

‖x‖1 for inducing sparsity,

and many others...
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Margins and Safe loss functions

Definition (Safe loss function)

Let ϕ : R→ R be a continuous convex loss function such that inft∈R ϕ(t) = 0. We say that
ϕ is a safe loss if there exists a non-singleton and non-empty interval I ⊂ R such that

t ∈ I =⇒ ϕ(t) = 0.

Figure 1: Example. The Hinge loss admits a flat area while the Logistic loss does not.
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Losses with a flat area and dual sparsity

A dual problem (obtained from Lagrange duality) to the ERM (1) above is

max
ν∈Rn

D(ν) =
1

n

n∑
i=1

−f ∗i (νi )− λR∗
(
−ATν

λn

)
.

At the optimum, x? = −A>ν?

λn .

Lemma (Safe loss and dual sparsity)

Consider the primal dual problems above. Denoting by x? and ν? the optimal primal and dual
variables respectively, we have for all i = 1, . . . , n,

ν?i ∈ ∂fi (a>i x?).

Consequence: For both classification and regression, the sparsity of the dual solution is
related to loss functions that have flat regions.
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Safe screening rule for data points

Theorem (Safe rules for data points)

For a loss having a flat region I, consider a subset X containing the optimal solution x?. If,
for a given data point (ai , bi ), the margin t ∈ I̊ for all x in X , where I̊ is the interior of I,
then this data point can be discarded from the dataset.

We assume that there exists µ > 0 such that I = [−µ, µ] for safe regression losses and
I = [µ,+∞) for classification.

Consequence: If max
x∈X
|a>i x − bi | < µ (regression) or min

x∈X
bia
>
i x > µ (classification), with X a

set which is known to contain x?, then ai can be discarded from the data set A (or
“screened”).

G. Mialon, A. d’Aspremont and J. Mairal Screening Data Points in Empirical Risk Minimization 6 / 16



Safe screening rule

Question: How to find a good set X ?

• It has to be small.

• It has to be tractable.
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Safe screening rule

Question: How to find a good set X ?

• It has to be small.

• It has to be tractable.

min
x∈X

bia
>
i x and max

x∈X
|a>i x − bi | are closed form when X is an ellipsoid!
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Finding X : Ellipsoid Method (Nemirovski and Yudin, 1976)

Step 0. Step 1. Step 2.
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Wrapping up

Algorithm 1 Building ellipsoidal test regions

1: initialization: Given E0(x0,E0) containing x?;
2: while k < nbsteps do
3: • Compute a gradient g of the objective in xk ;
4: • g̃ ← g/

√
gTEkg ;

5: • xk+1 ← xk − 1
p+1Ek g̃ ;

6: • Ek+1 ← p2

p2−1
(Ek − 2

p+1Ek g̃ g̃
TEk);

7: For classification problems:
8: for each sample ai in A do
9: if minbix

>ai ≥ µ for x ∈ Enbsteps then
10: Discard ai from A.
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Comparison to other safe regions

• [Ogawa et al., 2013] : pathwise computation properties of SVM.

• [Shibagaki et al., 2016] : when the objective is strongly convex, x? ∈ B(x , 2∆(x)
λ ) with x a

current iterate and ∆(x) a duality gap of the problem.

Table 1: State-of-the-art comparison for sample screening

Method Strongly convex Non strongly convex Generic

Pathwise SVM [Ogawa et al., 2013] 3 7 7
Duality Gap [Shibagaki et al., 2016] 3 7 3
Ellipsoid (Ours) 3 3 3
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Building safe losses

Logistic loss f (t) = log (1 + e−t) and Ω(x) = −x log (−x) + µ|x | for x ∈ [−1, 0]. We have
Ω∗(y) = −ey+µ−1. Convolving Ω∗ with f yields

fµ(x) =

{
ex+µ−1 − (x + µ) if x + µ− 1 ≤ 0,

0 otherwise.
(2)

Smooth and asymptotically robust. The entropic part of Ω makes this penalty strongly convex
hence fµ is smooth [Nesterov, 2005]. Finally, the `1 penalty ensures that the dual is sparse
thus making the screening usable.

f(t)

fµ(t)

µ=0.6
µ=0.1

Figure 2: Classification loss.

In summary, regularizing the dual with the `1 norm induces a flat region in the loss, which
induces sparsity in the dual. The geometry is preserved elsewhere.
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Experiments: many data sets contain useless samples

• In many datasets, there are a lot of samples to screen.

• MNIST (n = 60,000) and SVHN (n = 604,388) both represent digits, encoded by using
the output of a two-layer convolutional kernel network [Mairal, 2016] leading to feature
dimension p = 2304. RCV-1 (n = 781,265) represents sparse TF-IDF vectors of
categorized newswire stories (p = 47,236).

Table 2: Percentage of samples that can be discarded for problems trained with an `1-Safe Logistic loss.

Dataset MNIST SVHN RCV-1

λ = 10−3 0 % 2 % 12 %
λ = 10−4 27 % 17 % 42 %
λ = 10−5 65 % 54 % 75 %
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Experiments: a trade-off between screening and optimizing

Figure 3: Regularization path of a Squared Hinge SVM trained on MNIST. Computational budget used
vs. Regularization parameter in the path. Screening enables computational gains.
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