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About me

• 2016: Research intern at MIT, Nuclear Engineering.

• 2017: Graduated from École polytechnique
(Theoretical physics, Statistics, Computer Science).

• 2017-2018: NLP data scientist at eXplain, Paris.

• 2018: Graduated from machine learning (M.S.
MVA), ENS Paris-Saclay.

• 2018-today: PhD candidate, advised by Julien
Mairal and Alexandre d’Aspremont. An Offshore Floating Nuclear Plant.
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What I have been doing in the past 3.5 years

Kernel methods and deep learning in constrained data regimes (100 to 10k samples).

• G. Mialon*, D. Chen*, M. Selosse*, J. Mairal. GraphiT: Encoding Graph Structure in Transformers
(under review).

• G. Mialon*, D. Chen*, A. d’Aspremont, J. Mairal. A Trainable Optimal Transport Embedding for
Feature Aggregation and its Relationship to Attention (ICLR, 2021).

• A. Bietti*, G. Mialon*, D. Chen, J. Mairal. A Kernel Perspective for Regularizing Deep Neural
Networks (ICML, 2019).

Convex optimization.

• G. Mialon, A. d’Aspremont, J. Mairal. Screening Data Points in Empirical Risk Minimization via
Ellipsoidal Regions and Safe Loss Functions (AISTATS, 2020).
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What I want to talk about today

Kernel methods and transformers in constrained data regime (100 to 10k samples).
Application to scientific data.

• G. Mialon*, D. Chen*, M. Selosse*, J. Mairal. GraphiT: Encoding Graph Structure in Transformers
(under review).

• G. Mialon*, D. Chen*, A. d’Aspremont, J. Mairal. A Trainable Optimal Transport Embedding for
Feature Aggregation and its Relationship to Attention (ICLR, 2021).
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Motivation: designing strong models even when data is scarce

Learning with “few” data is one of the biggest problems in machine learning.

• A path towards better models?

• Or, simply because there is too few available data:
I Rare events: less than 30k people per rare disease in France (2021).
I Expensive or complex data collection for fundamental science/econometrics.
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How to design strong models in constrained data
regimes?
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Encode inductive bias within trainable architectures
with kernel methods.
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Outline: Encoding inductive bias within trainable architectures with kernel
methods

1. Encoding Graph Structure in Transformers with Kernels on Graphs

2. Embedding Sets of Features with Optimal Transport Kernels

3. Conclusion and perspectives
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Graph data are an important research topic

A molecule of theobromin, or why
chocolate makes us feel good.

Graph data are very valuable...

• Molecules in chemoinformatics.

• Proteins in computational biology.

• Meshes in computer vision and
computer graphics, etc.

...but delicate to exploit.

• Non-euclidean structure.
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Learning with Graph Neural Networks

Graph Neural Networks (GNNs).

• Introduced as an extension of neural networks for
graph-structured
data [Gori et al., 2005, Scarselli et al., 2008].

• Based on message passing.

GNN, layer k
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Learning with Graph Neural Networks

Graph Neural Networks (GNNs).

• Many strategies to aggregate features of
neighboring nodes [Duvenaud et al., 2015,
Bronstein et al., 2017, Veličković et al., 2018].

• Applications to molecules [Duvenaud et al., 2015],
physical systems [Battaglia et al., 2016],
materials [Xie et al., 2021], etc.
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GNNs may struggle with long-range interactions

Only neighboring nodes
communicate.

In GNNs, messages flow between neighbors only.

• Exploits the structure of the graph.

• But n layers for n-hop neighbors to interact.

• Oversmoothing [Li et al., 2018].
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GNNs may struggle with long-range interactions

An illustration of oversquashing
(From Alon and Yahav).

In GNNs, messages flow between neighbors only.

• Exploits the structure of the graph.
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• Oversmoothing [Li et al., 2018].

• Bottleneck effect [Alon and Yahav, 2021].

• Attempts at solving this
issue [Godwin et al., 2021].

G. Mialon Designing Transformers with Kernel Methods DeepMind 15 / 65



GNNs may struggle with long-range interactions

An illustration of oversquashing
(From Alon and Yahav).

In GNNs, messages flow between neighbors only.

• Exploits the structure of the graph.

• But, n layers for n-hop neighbors to interact.

• Oversmoothing [Li et al., 2018].

• Bottleneck effect [Alon and Yahav, 2021].

• Attempts at solving this
issue [Godwin et al., 2021].

G. Mialon Designing Transformers with Kernel Methods DeepMind 15 / 65



Transformers

Transformer encoder
(from Vaswani et al.)

Transformers perform global aggregation!

• Initially introduced in natural language
processing [Vaswani et al., 2017,
Devlin et al., 2019].

• Bioinformatics [Rives et al., 2019], Computer
vision [Dosovitskiy et al., 2021].

• Question the paradigm “one data modality,
one preferred architecture”.
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Transformers

Transformer encoder.

• Input: set of n elements X in Rn×din . Output: another set in Rn×dout .

• Feature map X updated via:
X = X + Attention(Q,K ,V ).

• Self-attention mechanism:

Attention(Q,K ,V ) = softmax

(
QK>√
dout

)
V ∈ Rn×dout , (1)

with Q> = WQX
> and K> = WKX

> resp. query and key matrices, V> = WVX
> the value

matrix, and WQ ,WK ,WV in Rdout×din learned projection matrices.

• LayerNorm then “element-wise” feed-forward.

• Repeat.
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Transformers for graphs require position encoding

Vision transformer (from [Dosovitskiy et al., 2021])

A nice inductive bias for graphs?

• All input elements communicate...

• ... but encoder output is
permutation invariant.

• Hence, position encoding often
required.

• Not trivial for graphs!
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Previous attempts at using transformers with graphs

(From Vert, 2021)

Dwivedi & Bresson, 2021: absolute PE us-
ing Laplacian eigenvectors.

• Aij = 1 if two nodes are connected.

• Diagonal coefficients of D are node
degrees.
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Previous attempts at using transformers with graphs

Spectral graph analysis.

• Eigenvalue decomposition L =
∑

i λiuiu
>
i .

• λi = u>i Lui =
∑

j∼k(ui (xj)− ui (xk))2

characterizes amount of oscillation of ui .

(From Vert, 2021)
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Promising results but...

ZINC: 12k graphs (regression).

0,0

0,1

0,2

0,3

0,4

MSE on ZINC

GAT GCN Dwivedi and Bresson, 2021 GatedGCN

Problems with Laplacian absolute PE.

• Flipping sign at training.

• Do these vectors transfer between
different graphs?

Can we improve graph structure en-
coding in transformers?
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Our contribution: GraphiT, or two mechanisms for encoding graph
structure in transformers

GraphiT: Encoding Graph Structure in Transformers
G. Mialon, D. Chen, M. Selosse, J. Mairal, 2021
Under review.
https://github.com/inria-thoth/GraphiT
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Reminder: Kernel methods

(From Bietti, 2019)

Learning with Kernel methods.

• Positive definite kernel K : defines a measure of similarity (prior?) between x and x ′.

• Associated to rich embedding Φ via K (x , x ′) = 〈Φ(x),Φ(x ′)〉H.

• A surrogate for Φ can be learned with or without supervision [Williams and Seeger, 2001].
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Kernels on graphs

Laplacian based kernels [Smola and Kondor, 2003].

• Rich family of p.d. kernels on the graph by applying regularization function r to the spectrum of L

Kr =
m∑
i=1

r(λi )uiu
>
i . (2)

• Associated with the norm ‖f ‖2r =
∑m

i=1 (f >i ui )
2/r(λi ) from a reproducing kernel Hilbert space

(RKHS), where r : R 7→ R+
∗ is a non-increasing function such that smoother functions on the graph

would have smaller norms in the RKHS.
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A famous kernel on graphs: the diffusion kernel

Diffusion Kernel [Kondor and Vert, 2004].

• When r(λi ) = e−βλi ,

KD =
m∑
i=1

e−βλiuiu
>
i = e−βL = lim

p→+∞

(
I − β

p
L

)p

.

• Physical interpretation: diffusion of a substance in the graph, controlled by β.

• Discrete equivalent of the Gaussian kernel, a solution to the heat equation in the continuous setting.
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Kernels on graphs reflect structural similarity between nodes

Diffusion kernel between the nodes of a MUTAG sample graph (β = 1).

Use kernel matrix to modulate self-attention!
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Mechanism 1: node position encoding with kernels on graphs

Regular attention.

• Self-attention:

Attention(Q,V ) = normalize

(
exp

(
QQ>√
dout

))
V ∈ Rn×dout . (3)

• Feature map X gets:
X = X + Attention(Q,V ). (4)

Remark. Same matrices for Q and K [Tsai et al., 2019].
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Mechanism 1: node position encoding with kernels on graphs

Modulated attention.

• Self-attention:

PosAttention(Q,V ,Kr ) = normalize

(
exp

(
QQ>√
dout

)
� Kr

)
V ∈ Rn×dout , (5)

with Kr a kernel on the graph.

• Feature map X gets:

X = X + D−
1
2 PosAttention(Q,V ,Kr ), (6)

with D the matrix of node degrees.
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• Feature map X gets:

X = X + D−
1
2 PosAttention(Q,V ,Kr ), (6)

with D the matrix of node degrees.
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Mechanism 2: leveraging substructures via path embedding

• Substructures: local positional information and content, e.g paths [Borgwardt et al., 2020].

• Augmenting node features u using kernel neighborhood encoding [Chen et al., 2020].

• Kernel encoding learned with or without supervision.

G. Mialon Designing Transformers with Kernel Methods DeepMind 30 / 65



Mechanism 2: leveraging substructures via path embedding

• Substructures: local positional information and content, e.g paths [Borgwardt et al., 2020].

• Augmenting node features u using kernel neighborhood encoding [Chen et al., 2020].

• Kernel encoding learned with or without supervision.

G. Mialon Designing Transformers with Kernel Methods DeepMind 30 / 65



Mechanism 2: leveraging substructures via path embedding

• Substructures: local positional information and content, e.g paths [Borgwardt et al., 2020].

• Augmenting node features u using kernel neighborhood encoding [Chen et al., 2020].

• Kernel encoding learned with or without supervision.

G. Mialon Designing Transformers with Kernel Methods DeepMind 30 / 65



GraphiT is able to outperform popular GNNs

ZINC: 12k graphs (regression).
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Vanilla transformer

Dwivedi & Bresson, 
2021

GraphiT (Structure 
encoding)

GraphiT (Diffusion 
kernel)

GatedGCN

GraphiT (Adjacency 
matrix)

GraphiT (Structure 
encoding + Diffusion 
kernel)

G. Mialon Designing Transformers with Kernel Methods DeepMind 31 / 65



GraphiT captures meaningful interactions

Mutagenicity: 4k graphs (binary classification).
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Figure 1: Left: A molecule from the Mutagenicity data set [Kersting et al., 2016]. Right: approximate diffusion
kernel for the molecular graph.
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Left: A molecule from the Mutagenicity data set [Kersting et al., 2016]. Right: nodes 8 (N of NO2) is salient.
NO2 group is known for its mutagenetic properties. The attention scores are averaged by heads.
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Limitations and perspectives of GraphiT

Current limitations...

• Evaluation on large scale datasets:
OGB [Hu et al., 2020]?

• Large graphs? Recent line of work on efficient
transformers [Tay et al., 2020].

...and exciting questions!

• Active domain of research [Ying et al., 2021,
Kreuzer et al., 2021].

• [Dwivedi et al., 2021] improved PE for
GraphiT.

• Visualization for real-life applications?

• Pre-trained models? Self-supervised learning
for graphs? [Thakoor et al., 2021]

(From [Kaplan et al., 2020]).
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Kernel smoothing interpretation

Self-attention as a kernel smoothing [Tsai et al., 2019].

• We can rewrite self-attention:

Attention(Q,K ,V )i =
n∑

j=1

exp

(
QiK

>
j√

dout

)
∑n

j′=1 exp

(
QiK>

j′√
dout

)Vj ∈ Rdout

=
n∑

j=1

k(Xi ,Xj)∑n
j′=1 k(Xi ,Xj)

v(Xj) ∈ Rdout ,

with Qi = WQXi , Kj = WKXj , v(Xj) = WVXj , k a non-negative kernel function: we get a kernel
smoothing.

Different choices for k suggest different transformers architectures.
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Kernel smoothing interpretation

Self-attention as a kernel smoothing [Tsai et al., 2019].
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n∑

j=1

k(Xi ,Xj)∑n
j′=1 k(Xi ,Xj)

v(Xj) ∈ Rdout ,

with k(Xi ,Xj) = exp

(
QiK

>
j√

dout

)
.

• k(Xi ,Xj) replaced by k(Xi ,Xj)× Kr (i , j). k : nodes contents similarity, Kr : nodes structural
similarity.

• Related to relative positional encoding [Shaw et al., 2018].

What if we pick a different similarity measure k?
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Outline

1. Encoding Graph Structure in Transformers with Kernels on Graphs

2. Embedding Sets of Features with Optimal Transport Kernels

3. Conclusion and perspectives
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Sets are another important data structure

Notre-Dame de Paris, LIDAR view
(Andrew Tallon)

Sets can be found in various domains.

• 3D shape recognition (point clouds).

• Protein sequences (set of features where order matters)
in computational biology.

• Sentences in NLP.

Common characteristics with graphs.

• Size may vary.

• Potential interactions between elements.
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Let’s focus on biological sequences

CUU GAC AAA GUU GAG GCU GAA GUG CAA AUU GAU AGG UUG AUC ACA GGC

L D K V E A E V Q I D R L I T G

Short part of mRNA sequence for the SARS-Cov-2 spike protein. Each triplet codes for an amino acid,
represented below.

Biological sequences may pose more problems: SCOP 1.75 [Murzin et al., 1995].

• Sequences may be long.

• Potentially few labelled sample per class.

G. Mialon Designing Transformers with Kernel Methods DeepMind 40 / 65



Let’s focus on biological sequences

CUU GAC AAA GUU GAG GCU GAA GUG CAA AUU GAU AGG UUG AUC ACA GGC

L D K V E A E V Q I D R L I T G

Short part of mRNA sequence for the SARS-Cov-2 spike protein. Each triplet codes for an amino acid,
represented below.

Biological sequences may pose more problems: SCOP 1.75 [Murzin et al., 1995].

• Sequences may be long.

• Potentially few labelled sample per class.

G. Mialon Designing Transformers with Kernel Methods DeepMind 40 / 65



Let’s focus on biological sequences

CUU GAC AAA GUU GAG GCU GAA GUG CAA AUU GAU AGG UUG AUC ACA GGC

L D K V E A E V Q I D R L I T G

Short part of mRNA sequence for the SARS-Cov-2 spike protein. Each triplet codes for an amino acid,
represented below.

Biological sequences may pose more problems: SCOP 1.75 [Murzin et al., 1995].

• Sequences may be long.

• Potentially few labelled sample per class.

G. Mialon Designing Transformers with Kernel Methods DeepMind 40 / 65



Our sequences require specific embedding

Existing methods do not yield satisfactory results for our data.

• Kernel methods for sets [Lyu, 2004]: not expressive enough.

• NN architectures for sets [Lee et al., 2019, Skianis et al., 2020]: empirically mixed results.

How to represent sets with low data and memory requirements?
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Our contribution: OTKE, a data-efficient embedding for sets

A Trainable Optimal Transport Embedding for Feature Aggregation and its Relationship to
Attention
G. Mialon, D. Chen, A. d’Aspremont, J. Mairal
ICLR 2021.
https://github.com/claying/OTK
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OTKE: a data-efficient embedding for sets

ϕ(x1) ϕ(x2) . . . ϕ(xn)

Φz(x)1 . . . Φz(x)p

P11 Pn1 P2p

Global, similarity-based pooling.

• Input: set or sequence X ∈ Rn×din .

• Element-wise, non-linear embedding ϕ.

• Pool elements ϕ(xi ) in p bins via weighted
sums.

• To each bin corresponds a prototype
(parameter) zj ∈ Rdout , j = 1 . . . p.

Pooling weight Pij reflects similarity between xi and zj.
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Our notion of similarity: optimal transport

P=

(
1/3 0 0

0 1/3 1/3

)

What is optimal transport?

• “Most efficient way of transporting a mass
distribution to
another” [Peyré and Cuturi, 2019].

• Finding the transport plan minimizing a
transportation cost.

• GPU-friendly
solvers [Sinkhorn and Knopp, 1967,
Cuturi and Doucet, 2013].
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Our notion of similarity: optimal transport

Dot-product vs OT.

• OT empirically better.

• Softmax not needed anymore.

Two interpretations.

• Embeds the sets in a space where `2 distance approximates the 2-Wasserstein
distance [Wang et al., 2013].

• Surrogate for a well-studied kernel [Rubner et al., 2000].

G. Mialon Designing Transformers with Kernel Methods DeepMind 45 / 65



Our notion of similarity: optimal transport

Dot-product vs OT.

• OT empirically better.

• Softmax not needed anymore.

Two interpretations.

• Embeds the sets in a space where `2 distance approximates the 2-Wasserstein
distance [Wang et al., 2013].

• Surrogate for a well-studied kernel [Rubner et al., 2000].

G. Mialon Designing Transformers with Kernel Methods DeepMind 45 / 65



Our notion of similarity: optimal transport

Dot-product vs OT.

• OT empirically better.

• Softmax not needed anymore.

Two interpretations.

• Embeds the sets in a space where `2 distance approximates the 2-Wasserstein
distance [Wang et al., 2013].

• Surrogate for a well-studied kernel [Rubner et al., 2000].

G. Mialon Designing Transformers with Kernel Methods DeepMind 45 / 65



Our notion of similarity: optimal transport

Dot-product vs OT.

• OT empirically better.

• Softmax not needed anymore.

Two interpretations.

• Embeds the sets in a space where `2 distance approximates the 2-Wasserstein
distance [Wang et al., 2013].

• Surrogate for a well-studied kernel [Rubner et al., 2000].

G. Mialon Designing Transformers with Kernel Methods DeepMind 45 / 65



Reasonable memory/data requirements

Data efficient.

• Z learned with or without supervision.

A linearized variant of attention.

• Kernel smoothing: we replaced
k(Qi ,Kj )∑n

j′=1
k(Qi ,Kj′ )

by P(X ,Z )ij .

• Linear in the number of input elements.

• Similar ideas in efficient transformers [Wang et al., 2020, Choromanski et al., 2021], etc.
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OTKE: (temporarily) sota for our bioinformatics tasks

SCOP 1.75: 20k samples (classifica-
tion).

• Classify protein folding from
amino-acid sequence: 1k labels!

• Sequence length from 10s to 1000s.

75

80

85

90

Top-1 accuracy on SCOP 1.75

Chen et al., 2019 Ours (dot-product) Ours (OT)
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What about pre-trained models?

During ICLR rebuttal...

• ESM [Rives et al., 2019], a
transformer protein language model
trained on 250M protein sequences.

• Train a linear layer on top of ESM
features.

75

80

85

90

95

100

Top-1 accuracy on SCOP 1.75

ESM (small) + mean pooling ESM (small) + our pooling
Ours ESM + mean pooling ESM + our pooling
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Limitations and perspectives of OTKE

As an embedding.

• Multi-layer version not trivial? [Jaegle et al., 2021]

• May be outperformed by available pre-trained model.

Perspective: adaptive pooling mechanism for deep architectures?

• Improved pooling for graph representation [Kolouri et al., 2021] or protein representation (ICLR
rebuttal).

• Interesting improvement of OTKE by [Anonymous, 2022].
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Outline

1. A new inductive bias for graphs

2. Embedding sets with low data requirements

3. Conclusion and perspectives
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Take-home messages

GraphiT

• Inductive bias of transformers is valid with graphs with small/medium scale datasets.

• Promising interpretation for graphs.

OTK Embedding

• Handling long sequences with few data.

• Challenged by transfer learning from pre-trained models.

• Interesting pooling mechanism connected to the recent line of work efficient transformers.

Kernel methods

• Reconcile deep learning with smaller data regimes!

• Understanding architectures via a different lens.
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Are inductive biases still useful?

In constrained data regime, inductive biases such as kernel methods are still useful!

• Not all domains have large data.

• When large unlabelled data is available, self-supervised learning may not work (yet).

But in large data regime?

• OTKE beaten by ESM [Rives et al., 2019].

• MLP-Mixer [Tolstikhin et al., 2021], DeiT [Touvron et al., 2020], BiT [Kolesnikov et al., 2020]: the
bitter lesson of machine learning more true than ever?

But in real life?

• AlphaFold2: physically motivated inductive biases.
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But in real life?
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Seek progress elsewhere?

Inductive biases can be found in learning paradigms...

• Invariant Risk Minimization [Arjovsky et al., 2020].

• Data augmentation and loss in Self-supervised
learning [He et al., 2020, Caron et al., 2020, Grill et al., 2020, Zbontar et al., 2021].

BYOL (from Grill et al.).
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Thank you!
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