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Motivation: biological sequences

Handling datasets of sets with positional information (e.g, biological sequences or sentences in
natural language) requires addressing different problems:

• Long-range and potentially complex dependencies between elements of the set.

• Varying size of the sequences.

We are mainly interested in biological sequences, which often pose two more problems:

• Long sequences (1000+ base pairs).

• Few labeled data (e.g, 20 labels per class for SCOP1.75).
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Figure 1: Protein sequence (each symbol represents an amino-acid).
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Current models are not adapted

Popular families of models for sets:

• Standard kernel methods [Lyu, 2004]: hand-crafted, lack of adaptivity.

• Neural networks with attention mechanism [Bahdanau et al., 2015, Vaswani et al., 2017],
and/or designed for sets [Lee et al., 2019]: possible memory issues with long sequences,
performance drop when trained on few data.

We need a trainable embedding for sets with lower memory/sample requirements.
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Idea: attention with optimal transport and kernel methods

We provide an embedding with an inductive bias akin to that of self-attention. Two steps:

1. Non-linear layer: we use a parametrized kernel embedding in the fashion
of [Chen et al., 2019a].

2. Pooling: similar elements are pooled together. The measure of similarity is the optimal
transport plan between the input set x ∈ Rn×d and a learned reference z ∈ Rp×d .
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Figure 2: The input point cloud x is transported onto the reference z = (z1, . . . , zp) (left), yielding the
optimal transport plan Pκ(x, z) used to aggregate the embedded features and form Φz(x) (right).
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Results

The resulting (non-standard) kernel formulation provides a rich representation for sequences
with relatively few parameters that can be trained end-to-end or without supervision.

Table 1: Classification accuracy (top 1/5/10) on test set for SCOP 1.75 for different unsupervised and
supervised baselines, averaged from 10 different runs. (q references × p supports).

Method Unsupervised Supervised

DeepSF [Hou et al., 2019] Not available. 73.0/90.3/94.5
CKN [Chen et al., 2019a] 81.8±0.8/92.8±0.2/95.0±0.2 84.1±0.1/94.3±0.2/96.4±0.1
RKN [Chen et al., 2019b] Not available. 85.3±0.3/95.0±0.2/96.5±0.1
Set Transformer [Lee et al., 2019] Not available. 79.2±4.6/91.5±1.4/94.3±0.6
Approximate Rep the Set [Skianis et al., 2020] Not available. 84.5±0.6/94.0±0.4/95.7±0.4

Ours (dot-product instead of OT) 78.2±1.9/93.1±0.7/96.0±0.4 87.5±0.3/95.5±0.2/96.9±0.1
Ours (Unsup.: 1× 100 / Sup.: 5× 10) 85.8±0.2/95.3±0.1/96.8±0.1 88.7±0.3/95.9±0.2/97.3±0.1
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Conclusion

• Relationship to self-attention.

• Results for other bioinformatics tasks, natural language processing and computer vision
can be found in the longer version of our paper https://arxiv.org/abs/2006.12065.

• Our code is freely available at https://github.com/claying/OTK.

Thank you!
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