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Introduction:

Who am | and what | would like to talk about

Me: not a NLP researcher, although | did some prior to my PhD.

My PhD: learning competitive models when labeled data is scarce.
How? Integrating priors adapted to the data.

Pre-trained (Transformer) models: outperform this approach in various
domains. “The bitter lesson of machine learning” (Richard Sutton, 2019).
e In this talk, NLP “=" Transformer pre-trained language models.

A high level review on how Pre-trained Transformers are
changing the practice of machine learning.



| - What happened to NLP?

e 2018: the ImageNet moment of NLP. Scaled Dot-Product Attention
o Transformer (Vaswani et al., 2017).
o BERT (Devlin et al., 2019).
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| - What happened to NLP?

e 2018: the ImageNet moment of NLP.

Transformers asymptotically outperform LSTMs LSTM plateaus after <100 tokens
due to improved use of long contexts Transformer improves through the whole context
Test Loss 5.4 Per-token
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o Transformers scale better than LSTMs when its comes to bigger models (Kaplan et al.,
2020).



| - What happened to NLP?

e Consequences

o NLP is much more accessible than ever.
m  Models: CamemBERT (Martin et al., 2020), FlauBERT, (Le et al., 2020)
m  Open source building blocks: transformers, (Wolf et al., 2019), spaCy ~2017.
m BERTology, GPT-2 & 3.

o The gap between academia and organizations such as FAANGs grows bigger.
m  GPT-3 ~$4.6 Million? Still behind an API.
m Few papers studying GPT-3 for now, through the APl only. None at ICLR:
transparency issue.



Il - How Transformers and self-supervised learning are

influencing machine learning
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e Transformers scaling follows a power law without plateauing, yet (Kaplan et al., 2020).

e What if we trained a Transformer “language” model on other types of data?



Il - How Transformers and self-supervised learning are

influencing machine learning

e Language models out of NLP: the
bioinformatics case.

o Proteins are sequences of amino acids.

Nucleotide triplet  CUU GAC AAA GUU GAG GCU GAA GUG CAA AUU GAU AGG UUG AUC ACA GGC
Amino acid L D K vV E A E V Q I D R L I T G
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e Language models out of NLP: the
bioinformatics case.

o Proteins are sequences of amino acids.

Nucleotide triplet CUU GAC AAA GUU GAG GCU GAA GUG CAA AUU GAU AGG UUG AUC ACA GGC
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o Transformer based language models can therefore be
trained by masking some amino acids!



Il - How Transformers and self-supervised learning are

influencing machine learning

e Language models out of NLP: the
bioinformatics case.

o (Rives et al., 2019), 250 M sequences,
BERT-like architecture.
o Oneimportant task: fold prediction.




Il - How Transformers and self-supervised learning are

influencing machine learning

e Language models out of NLP: the
bioinformatics case.

o (Rives et al., 2019), 250 M sequences, BERT-like
architecture.
One important task: fold prediction.

o Outperforming current models (Mialon et al., 2021),
AlphaFold2?

Table 2: Classification accuracy (top 1/5/10) on test set for SCOP 1 75 far differant nncnnarvicad . ) -
and supervised baselines, averaged from 10 different runs (¢ re Table 5: Classification accuracy (top 1/5/10) results of our unsupervised embedding for SCOP 1.75

with pre-trained ESM models (Rives et al., 2019).

Method | Unsupervised

DeepSF (Hou et al., 2019) Not ivailable. Model Nb parameters Mean Pooling Unsupervised OTKE
CKN (Chen et al., 2019a) 81.8+0.8/92.8+0.2/9 ESM1-t6-43M-UR508 43M 84.01/93.17/95.07  85.91/93.72/95.30
RKN (Chen et al., 2019b) Not available. ESM1-t34-670M-UR50S 670M 94.95/97.32/97.91  95.22/97.32/98.03
Set Transformer (Lee et al., 2019) Not available.

Approximate Rep the Set (Skianis et al., 2020) Not available. \ 84.5+0.6/94.0£0.4/95.7+0.4

Ours (dot-product instead of OT) 78.2+1.9/93.1+0.7/96.0+0.4 | 87.54+0.3/95.5+0.2/96.9+40.1

Ours (Unsup.: 1 x 100/ Sup.: 5 x 10) 85.8+0.2/95.3+0.1/96.8+-0.1 | 88.7+0.3/95.9--0.2/97.3+0.1




Il - How Transformers and self-supervised learning are

influencing machine learning

e Transformers also work with
labels: the computer vision
case.

o Training data: JFT: 300M
labeled images whereas
ImageNet is 15M.

o VIiT (Dosovitskyi et al.,
2021).

o Outperforms
competitive CNNs
(ResNet) trained on the
same huge amount of
data.

Vision Transformer (ViT) Transformer Encoder
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Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).



Il - How Transformers and self-supervised learning are

influencing machine learning

e But, will labels always be needed?

o SWAV (Caron et al., 2020), BYOL (Grill et al., 2020) for ® Supervised 4 SwAV

learning visual features without labels. 80
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Il - How Transformers and self-supervised learning are

influencing machine learning

e But, will labels always be needed? CLIP (Radford et al., 2021).

1. Contrastive pre-training 2. Create dataset classifier from label text
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Il - How Transformers and self-supervised learning are

influencing machine learning

e But, will labels always be needed? CLIP (Radford et al., 2021).
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lll - Pre-trained Transformer models underline challenges

machine learning has to solve

e Energy efficiency of language models.

o  Strubell et al., 2019. Consumption COze (Ibs)
o Be wary about the numbers (energy mix, hardware, ﬁ“ “a"?l%l passegss NY+»SF 111(9)3‘3‘
i i uman life, avg, 1 year ;
Implementatlon' etc.). American life, avg, 1 year 36,156
e However: Car, avg incl. fuel, 1 lifetime 126,000
o Many will want to train their own model. Training one model (GPU)
o  What if we train Transformers on images or BERT,,.. "

videos?
GPT-3 data: 570GB. JFT300M: 45TB? Existing open
video datasets ~1-10 TB.

o  What about the cost of deploying these models in
real products?



lll - Pre-trained Transformer models underline challenges

machine learning has to solve

e Robustness of language models: “all the bad things

that can happen when the model is deployed”.
o Learned data sets (Carlini et al., 2020).
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lll - Pre-trained Transformer models underline challenges

machine learning has to solve

e Robustness of language models.
o Learned data sets (Carlini et
al., 2020).

. . Homeland originally aired on [MASK] | Seinfeld originally aired on [MASK
o Bias, offensive content L / : I

(Kurita et al., 2019, Bender
et al., 2021).

o Inconsistency (Elazar et al., ' "7 '
2021). nconsistent |} gl

e And also many other challenges
more specific to Transformers.

Homeland premiered on [MASK] Seinfeld premiered on [MASK]




Conclusion

In the short/middle term, we can expect success of Transformers in new domains of
machine learning.

But machine learning is still far from being solved.

Some organizations exhibit secretive behaviors when it comes to releasing their
models. But one of the reason for the recent success of machine learning is its open
source culture.

“In computing, the phenomenon when certain algorithms win not because they are
ideally suited to solve certain problems, but because they run well on the existing
hardware is called Hardware Lottery (Hooker, 2020) - and this is the case with
Transformers running on GPUs". - Michael Bronstein. Three years ago, Transformers
were barely used: let's keep an open mind!



Thank you!

And thanks to Thomas Eboli, Yana Hasson, Geoffrey Negiar, and Robin
Strudel for their comments.
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