# GraphiT: Encoding Graph Structure in Transformers

Grégoire Mialon, Dexiong Chen, Margot Selosse, Julien Mairal

NYU/Willow seminar



## Graph data are an important research topic



LC9-RNase H1 from Escherichia Coli

#### Graph data are very valuable...

- Proteins in computational biology [Senior et al., 2020].
- Molecules in chemoinformatics [Duvenaud et al., 2015].
- Shapes in computer vision and computer graphics [Verma et al., 2018], etc.
- ... but delicate to handle.
  - Irregular structure.
  - How to make use of neural networks?

## Learning on graph data today

#### Graph Neural Networks (GNNs).

- Introduced as an extension of neural networks for graph-structured data [Scarselli et al., 2008].
- Message passing paradigm in which feature vectors are exchanged between neighboring nodes.
- Node representations are updated using neural networks.
- Many strategies to aggregate features of neighboring nodes [Duvenaud et al., 2015, Bronstein et al., 2017, Veličković et al., 2018].



## Inductive biases for graphs

#### In GNNs, messages flow between neighbors only.

- Exploits the structure of the graph.
- But *n* layers for *n*-hop neighbors to communicate.
- Could global aggregation better capture long-range interactions?

#### Transformers perform global aggregation!

#### Transformers

#### Transformers (we only use encoder).

- A sequence of layers processing an input set of *n* elements *X* in  $\mathbb{R}^{n \times d_{in}}$ , and compute another set in  $\mathbb{R}^{n \times d_{out}}$ .
- Self-attention mechanism:

$$\mathsf{Attention}(Q, \mathcal{K}, V) = \mathsf{softmax}\left(\frac{Q\mathcal{K}^{\top}}{\sqrt{d_{out}}}\right) V \in \mathbb{R}^{n \times d_{out}}, \tag{1}$$

with  $Q^{\top} = W_Q X^{\top}$  and  $K^{\top} = W_K X^{\top}$  resp. query and key matrices,  $V^{\top} = W_V X^{\top}$  the value matrix, and  $W_Q, W_K, W_V$  in  $\mathbb{R}^{d_{out} \times d_{in}}$  learned projection matrices.

• During forward pass, feature map X updated via:

$$X = X + \text{Attention}(Q, K, V).$$

- LayerNorm then "element-wise" feed-forward.
- Repeat.

### Transformers



Transformer encoder (from Vaswani et al., 2017)

## GNNs and transformers are tightly connected



Left: GNN. Right: Transformer (from Joshi, 2020).



# Challenging GNNs with transformers encoding graph structure

GNNs and transformers are tightly connected, but...

- GNNs are the standard architecture for learning on graphs. Inductive bias: message passing between neighbors.
- Transformers: all input elements are allowed to communicate.
- Self-attention layer is permutation invariant.
- Without structure encoding, a bag of graph nodes model!

# How to provide the transformer with graph structural information?

• Our work, GraphiT, tackles this issue.



(From Joshi, 2020)

# Our contribution: Two mechanisms for encoding graph structure in transformers

#### I- Node position encoding.

- Position encoding: adding positional only information to the feature vector of an input node or to the attentions scores.
- As opposed to sequences or images, encoding positions of the elements in a graph is not trivial.
- [Dwivedi and Bresson, 2021] proposed absolute position encoding strategy based on the eigenvectors of the Laplacian. Transferability between graphs?
- We propose a relative position encoding based on kernels on graphs.

#### II- Encoding substructures.

- Substructures: carry local positional information and content, e.g walks, subtrees, graphlets.
- Heavily used within graph kernels [Borgwardt et al., 2020].
- We propose to encode local substructure using a method from [Chen et al., 2020].

### Reminder: Kernel methods



(From Bietti, 2019)

#### Learning with Kernel methods

- Map data x to high-dimensional space,  $\Phi(x) \in \mathcal{H}$  (RKHS).
- $\Phi$  associated to a positive definite kernel K:  $K(x, x') = \langle \Phi(x), \Phi(x') \rangle_{\mathcal{H}}$ .
- Convex optimization for learning linear decision function in the RKHS (non-linear in the original space, kernel trick).

# I - Kernel on graphs

#### Spectral graph analysis.

The Laplacian of a graph with n nodes defined as L = D − A. D is a n × n diagonal matrix of node degrees and A the adjacency matrix.



(From JP Vert's course on kernel methods)

# I - Kernel on graphs

#### Spectral graph analysis.

- Eigenvalue decomposition  $L = \sum_i \lambda_i u_i u_i^{\top}$ .
- Eigenvalues  $\lambda_i = u_i^\top L u_i = \sum_{j \sim k} (u_i(x_j) - u_i(x_k))^2.$
- Characterizes the amount of oscillation of the corresponding eigenvector  $u_i$  (a function on the nodes).
- "Discrete equivalent" to sine/cosine Fourier basis in ℝ<sup>n</sup> and associated frequencies.



(From JP Vert's course on kernel methods)

# I - Kernel on graphs

#### Spectral graph analysis.

- Eigenvalue decomposition  $L = \sum_i \lambda_i u_i u_i^{\top}$ .
- Eigenvalues  $\lambda_i = u_i^\top L u_i = \sum_{j \sim k} (u_i(x_j) - u_i(x_k))^2.$
- Characterizes the amount of oscillation of the corresponding eigenvector  $u_i$  (a function on the nodes).
- "Discrete equivalent" to sine/cosine Fourier basis in  $\mathbb{R}^n$  and associated frequencies.



(From JP Vert's course on kernel methods)

## I - Kernels on graphs

#### Laplacian based kernels [Smola and Kondor, 2003].

- It is possible to define a family of p.d. kernels on the graph by applying a regularization function r to the spectrum of L.
- We get a rich class of kernels

$$K_r = \sum_{i=1}^m r(\lambda_i) u_i u_i^{\top}, \qquad (2)$$

associated with the norm  $||f||_r^2 = \sum_{i=1}^m (f_i^\top u_i)^2 / r(\lambda_i)$  from a reproducing kernel Hilbert space (RKHS), where  $r : \mathbb{R} \mapsto \mathbb{R}^+_*$  is a non-increasing function such that smoother functions on the graph would have smaller norms in the RKHS.

## I - Kernels on graphs

#### Diffusion Kernel [Kondor and Vert, 2004].

• When  $r(\lambda_i) = e^{-\beta \lambda_i}$ ,

$$K_D = \sum_{i=1}^m e^{-\beta\lambda_i} u_i u_i^\top = e^{-\beta L} = \lim_{p \to +\infty} \left( I - \frac{\beta}{p} L \right)^p.$$

- Discrete equivalent of the Gaussian kernel, a solution of the heat equation in the continuous setting, hence its name.
- Interpretation in terms of diffusion of a substance in the graph, controlled by  $\beta$ .

# I - Kernels on graphs



Figure 1: Diffusion kernel between the nodes of a MUTAG sample graph ( $\beta = 1$ ).

G. Mialon, D. Chen, M. Selosse, J. Mairal

GraphiT

I - Relative position encoding with kernels on graphs

#### Regular attention.

• Self-attention layer

Attention
$$(Q, V) =$$
normalize  $\left( \exp\left(\frac{QQ^{\top}}{\sqrt{d_{\text{out}}}}\right) \right) V \in \mathbb{R}^{n \times d_{\text{out}}}.$  (3)

• During forward pass, feature map X is updated as follows:

$$X = X + \text{Attention}(Q, V). \tag{4}$$

**Remark.** As in [Tsai et al., 2019], we use the same matrices for Q and K.

## I - Relative position encoding with kernels on graphs

#### Modulated attention.

• Self-attention layer becomes

$$\mathsf{PosAttention}(Q, V, K_r) = \mathsf{normalize}\left(\exp\left(\frac{QQ^{\top}}{\sqrt{d_{\mathsf{out}}}}\right) \odot K_r\right) V \in \mathbb{R}^{n \times d_{\mathsf{out}}}, \tag{5}$$

with the same Q and V matrices, and  $K_r$  a kernel on the graph.

• During forward pass, feature map X is updated as follows:

$$X = X + D^{-\frac{1}{2}} \text{PosAttention}(Q, V, K_r),$$
(6)

with *D* the matrix of node degrees and  $K_r$  a kernel on the graph.

**Remark.** As opposed to absolute position encoding, the model does not rely on the transferability of eigenvectors between different Laplacians.

## I - Kernel smoothing interpretation

Self-attention as a kernel smoothing.

• We can rewrite self-attention:

$$egin{aligned} &\operatorname{Attention}(Q,K,V)_{i} = \sum_{j=1}^{n} rac{exp\left(rac{Q_{i}K_{j}^{ op}}{\sqrt{d_{out}}}
ight)}{\sum_{j'=1}^{n}exp\left(rac{Q_{i}K_{j'}^{ op}}{\sqrt{d_{out}}}
ight)}V_{j} \in \mathbb{R}^{d_{\mathrm{out}}} \ &= \sum_{j=1}^{n} rac{k(X_{i},X_{j})}{\sum_{j'=1}^{n}k(X_{i},X_{j})}v(X_{j}) \in \mathbb{R}^{d_{\mathrm{out}}}, \end{aligned}$$

with  $Q_i = W_Q X_i$ ,  $K_j = W_K X_j$ ,  $v(X_j) = W_V X_j$ , k a non-negative kernel function: we get a kernel smoothing.

- Different choices for k suggest different transformers architectures [Tsai et al., 2019].
- We replaced  $k(X_i, X_j)$  by  $k(X_i, X_j) \times K_r(i, j)$ . k based on node content,  $K_r$  based on node structural similarity.
- Related to relative positional encoding [Shaw et al., 2018].

### II - Leveraging substructures via kernel embedding of paths



(from Chen et al., 2020)

## II - Leveraging substructures via kernel embedding of paths

#### In practice.

- Encoding method from [Chen et al., 2020].
- We add the vector encoding the local substructure around node *u* to the feature vector of *u* at the transformer input.
- Similar approach in [Dosovitskiy et al., 2021].

# GraphiT is able to outperform popular GNNs

| Method / Dataset              | MUTAG           | PROTEINS       | PTC              | NCI1           | ZINC (no edge feat.) |
|-------------------------------|-----------------|----------------|------------------|----------------|----------------------|
| Size                          | 188             | 1113           | 344              | 4110           | 12k                  |
| Max. number of nodes          | 28              | 620            | 109              | 111            | 37                   |
| GCN [Kipf and Welling, 2017]  | $78.9{\pm}10.1$ | 75.8±5.5       | 54.0±6.3         | 75.9±1.6       | $0.367{\pm}0.011$    |
| GAT [Veličković et al., 2018] | 80.3±8.5        | $74.8{\pm}4.1$ | $55.0{\pm}6.0$   | $76.8{\pm}2.1$ | $0.384{\pm}0.007$    |
| GIN [Xu et al., 2019]         | $82.6{\pm}6.2$  | 73.1±4.6       | $55.0{\pm}8.7$   | 81.7±1.7       | $0.387{\pm}0.015$    |
| [Dwivedi and Bresson, 2021]   | 83.9±6.5        | 70.1±3.2       | 57.7±3.1         | 80.0±1.9       | $0.323{\pm}0.013$    |
| Transformers (T)              | 82.2±6.3        | 75.6±4.9       | $58.1{\pm}10.5$  | 70.0±4.5       | $0.696{\pm}0.007$    |
| T + LapPE                     | $85.8{\pm}5.9$  | $74.6{\pm}2.7$ | $55.6 {\pm} 5.0$ | $74.6{\pm}1.9$ | $0.507{\pm}0.003$    |
| T + Adj PE                    | 87.2±9.8        | $72.4{\pm}4.9$ | $59.9{\pm}5.9$   | 79.7±2.0       | $0.243{\pm}0.005$    |
| T + 2-step RW kernel          | $85.3{\pm}6.9$  | $72.8{\pm}4.5$ | 62.0±9.4         | $78.0{\pm}1.5$ | $0.243{\pm}0.010$    |
| T + 3-step RW kernel          | 83.3±6.3        | 76.2±4.4       | $61.0{\pm}6.2$   | 77.6±3.6       | $0.244{\pm}0.011$    |
| T + Diffusion kernel          | 82.7±7.6        | 74.6±4.2       | $59.1 \pm 7.4$   | $78.9{\pm}1.6$ | $0.255{\pm}0.010$    |
| T + GCKN                      | 84.4±7.8        | 69.5±3.8       | $61.5{\pm}5.8$   | $78.1{\pm}5.1$ | $0.274{\pm}0.011$    |
| $T+GCKN+Adj\;PE$              | 90.5±7.0        | $71.1{\pm}6.9$ | 57.9±4.2         | 81.4±2.2       | $0.211{\pm}0.010$    |
| T + GCKN + Diffusion kernel   | 90.0±6.8        | 72.4±4.9       | $55.9{\pm}8.1$   | 81.0±2.0       | $0.197{\pm}0.002$    |

## GraphiT seems to capture meaningful patterns



Figure 2: Left: A molecule from the Mutagenicity data set [Kersting et al., 2016]. Right: approximate diffusion kernel for the molecular graph.

## GraphiT seems to capture meaningful patterns



Figure 3: Left: A molecule from the Mutagenicity data set [Kersting et al., 2016]. Right: nodes 8 (N of  $NO_2$ ) is salient.  $NO_2$  group is known for its mutagenetic properties. The attention scores are averaged by heads.



### Conclusion

#### GraphiT.

- Inductive bias of transformers is valid with graphs.
- Attention provides promising intepretation tools.
- Paper available at https://arxiv.org/abs/2106.05667.
- Code available at https://github.com/inria-thoth/GraphiT.

#### References I

Borgwardt, K., Ghisu, E., Llinares-López, F., O'Bray, L., and Rieck, B. (2020). Graph kernels: State-of-the-art and future challenges. *arXiv preprint arXiv:2011.03854*.

Bronstein, M., Bruna, J., LeCun, Y., Szlam, A., and Vandergheynst, P. (2017). Geometric deep learning: Going beyond euclidean data. *IEEE Signal Processing Magazine*, 34(4):18–42.

Chen, D., Jacob, L., and Mairal, J. (2020). Convolutional kernel networks for graph-structured data. In *International Conference on Machine Learning (ICML)*.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. (2021). An image is worth 16x16 words: Transformers for image recognition at scale. In *International Conference on Learning Representations (ICLR)*.

Duvenaud, D., Maclaurin, D., Aguilera-Iparraguirre, J., Gómez-Bombarelli, R., Hirzel, T., Aspuru-Guzik, A., and Adams, R. P. (2015). Convolutional networks on graphs for learning molecular fingerprints. In *Advances in Neural Information Processing Systems (NeurIPS)*.

#### References II

Dwivedi, V. P. and Bresson, X. (2021). A generalization of transformer networks to graphs. AAAI Workshop on Deep Learning on Graphs: Methods and Applications.

Kersting, K., Kriege, N. M., Morris, C., Mutzel, P., and Neumann, M. (2016). Benchmark data sets for graph kernels.

Kipf, T. N. and Welling, M. (2017). Semi-supervised classification with graph convolutional networks. In *International Conference on Learning Representations (ICLR)*.

Kondor, R. and Vert, J.-P. (2004). Diffusion kernels. In *Kernel Methods in Computational Biology*, pages 171–192. MIT Press.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. (2008). The graph neural network model. *IEEE transactions on neural networks*, 20(1):61–80.

Senior, A. W., Evans, R., Jumper, J., Kirkpatrick, J., Sifre, L., Green, T., et al. (2020). Improved protein structure prediction using potentials from deep learning. *Nature*, 577(7792):706–710.

## References III

Shaw, P., Uszkoreit, J., and Vaswani, A. (2018). Self-attention with relative position representations. In *Proceedings of the North American Chapter of the Association for Computational Linguistics* (NAACL).

Smola, A. J. and Kondor, R. (2003). Kernels and regularization on graphs. In Schölkopf, B. and Warmuth, M. K., editors, *Learning Theory and Kernel Machines*, pages 144–158. Springer Berlin Heidelberg.

Tsai, Y.-H. H., Bai, S., Yamada, M., Morency, L.-P., and Salakhutdinov, R. (2019). Transformer dissection: A unified understanding of transformer's attention via the lens of kernel. In *Conference on Empirical Methods in Natural Language Processing (EMNLP)*.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y. (2018). Graph attention networks. In *International Conference on Learning Representations (ICLR)*.

Verma, N., Boyer, E., and Verbeek, J. (2018). Feastnet: Feature-steered graph convolutions for 3d shape analysis. In *Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR)*.

## References IV

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2019). How powerful are graph neural networks? In *International Conference on Learning Representations (ICLR)*.