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Introduction: Recent success of machine learning

Improved web search engines.
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Introduction: How does this work?

Recipe: Huge models + huge data + learning problem + optimization algorithm + computing power
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Introduction: How does machine learning work? A canonical example

Recipe: Huge models + huge data + learning problem + optimization algorithm + computing power

• Supervised model f takes an input x (e.g an image) and outputs a “label” f (x) (e.g a letter).

• A neural network model f : f (x) = Wn(σn(. . .W1σ1(x) . . . )).

A convolutional neural network (from LeCun et al., 1998).

• Today: Millions of adjustable parameters.
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Introduction: How does machine learning work? A canonical example

Recipe: Huge models + huge data + learning problem + optimization algorithm + computing power

Samples from ImageNet (1.2M images).
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Introduction: How does machine learning work? A catnonical example

Recipe: Huge models + huge data + learning problem + optimization algorithm + computing power

I am organized but lazy: how to automatically classify these images as “cat” or “dog”?
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Introduction: How does machine learning work? A canonical example

Recipe: Huge models + huge data + learning problem + optimization algorithm + computing power

Empirical risk minimization:

min
θ∈H

L(θ) = 1

n

n∑
i=1

ℓ(fθ(xi ), yi )︸ ︷︷ ︸
Empirical risk, data fit

+ λR(fθ)︸ ︷︷ ︸
Regularization

,

with f a neural network with parameters θ, xi an image and yi a label, here “cat” or “dog”.

Regularization penalizes the complexity of the model (from scikit-learn.org).
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Introduction: How does machine learning work? A canonical example

Recipe: Huge models + huge data + learning problem + optimization algorithm + computing power

Gradient descent:

0000

L(θt)

−∇θtL(θt)

θt+1 = θt − η∇θtL(θt).
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Introduction: How does machine learning work? A canonical example

Recipe: Huge models + huge data + learning problem + optimization algorithm + computing power

Jean Zay supercalculator in Saclay is notably equipped with Tesla V100 computing chips.

G. Mialon (Inria Sierra, Inria Thoth) Inductive Biases for Machine Learning in Data Constrained Settings PhD defense. January 19, 2022 11 / 45



Getting back to our introductory example

Google “new” search engine [Devlin et al., 2019]: Transformer (340M params) + ∼ 33k books + Sentence
completion + Stochastic gradient descent + 64 TPUs for 4 days.

TPU chips in a Google data center.
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Problem: Deep learning does not work that great on smaller datasets

Method VGG-11 ResNet-18

All (60k) samples 91.0 93.0
5k samples [Bietti et al., 2019] 72.8 73.1
1k samples [Bietti et al., 2019] 51.3 44.9
Random 10.0 10.0

Classification accuracies of convolutional neural networks trained on the image dataset CIFAR-10
(with data augmentation).

• No clear regularization scheme [Bietti, Mialon, Chen and Mairal, ICML 2019].
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Learning with smaller datasets is one of the biggest problems in machine learning

Important problems often mean medium or small data.

• Molecules or proteins with rare properties.

• Less than 30k people per rare disease in France (2021).

• Expensive or complex data collection for fundamental science/econometrics.

• Rare events in self-driving cars datasets.

A path towards better models?
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Our approach: A slightly different recipe

This thesis: Models + inductive bias + possibly smaller datasets + learning problem + optimization

algorithm + computing power

Inductive bias: Constraining some parts of the model so that it efficiently learns from the data.

Regularization, a simple example of inductive bias:

min
(θ1,θ0)∈H

L(θ) = 1

n

n∑
i=1

ℓ(θ⊤1 xi + θ0, yi )︸ ︷︷ ︸
Empirical risk, data fit

+ λ||θ1||1︸ ︷︷ ︸
Regularization

.
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Our approach. Another example of inductive bias.

Inductive bias in CNNs:

• Local pooling.

• Multi-scale modeling.

Useful for efficient learning from natural images.
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Contributions

This thesis: Models + inductive bias + possibly smaller datasets + learning problem +

optimization algorithm + computing power

Kernel methods and deep learning in constrained data regimes (10k to 100k samples).

• A. Bietti*, G. Mialon*, D. Chen, J. Mairal. A Kernel Perspective for Regularizing Deep Neural Networks
(ICML, 2019).

• G. Mialon*, D. Chen*, A. d’Aspremont, J. Mairal. A Trainable Optimal Transport Embedding for Feature
Aggregation and its Relationship to Attention (ICLR, 2021).

• G. Mialon*, D. Chen*, M. Selosse*, J. Mairal. GraphiT: Encoding Graph Structure in Transformers
(arXiv:2106.05667, 2021).

Convex optimization.

• G. Mialon, A. d’Aspremont, J. Mairal. Screening Data Points in Empirical Risk Minimization via Ellipsoidal
Regions and Safe Loss Functions (AISTATS, 2020).
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Outline

1 Introduction and approach of the thesis

2 Handling sets data with optimal transport embeddings [Mialon et al., 2021a]

3 Handling graph data with transformers neural networks [Mialon et al., 2021b]

4 Getting rid of useless data with safe sample screening [Mialon et al., 2020]

5 Conclusion and perspectives
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Sets are an important data modality

CUU GAC AAA GUU GAG GCU GAA GUG CAA AUU GAU AGG UUG AUC ACA GGC

L D K V E A E V Q I D R L I T G

L: 2 D: 2 K: 1 V: 2 E: 2 A: 1 Q: 1 I: 2 R: 1 T: 1 G: 1

Top: Short part of mRNA sequence for the SARS-Cov-2 spike protein.
Middle: Each triplet codes for an amino acid.
Bottom: Set representation of the sequence (1-grams).

• Biological sequences, e.g, proteins.

• Sentences in natural language processing (NLP), 3D point cloud in computer vision.

• Different cardinalities, potentially long, with few labelled sample per class.
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Focusing on biological sequences

CUU GAC AAA GUU GAG GCU GAA GUG CAA AUU GAU AGG UUG AUC ACA GGC

L D K V E A E V Q I D R L I T G

L: 2 D: 2 K: 1 V: 2 E: 2 A: 1 Q: 1 I: 2 R: 1 T: 1 G: 1

Top: Short part of mRNA sequence for the SARS-Cov-2 spike protein.
Middle: Each triplet codes for an amino acid.
Bottom: Set representation of the sequence (1-grams).

Existing methods do not yield satisfactory results for our data.

• Kernel methods for sets [Lyu, 2004]: not expressive enough.

• Neural networks for sets [Lee et al., 2019, Skianis et al., 2020]: empirically mixed results.

How to represent sets with low data and memory requirements?
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An attractive kernel for sets

Kernel methods [Schölkopf and Smola, 2001] allow rich representation of the data.

• Let x ∈ Rn×d , x′ ∈ Rn′×d be two sets of feature vectors. The Optimal Transport Match Kernel is defined as

KOT(x, x
′) =

∑
i,j

Pij⟨xi , x′j⟩,

where P ∈ Rn×n′ is the solution to the regularized optimal transport problem between x and x′.

• Intuitively, KOT(x, x
′) high if x and x′ are easy to align.
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(Regularized) Optimal transport

x1

x2xn

x′
1

x′
n′

P11

P2n′Pn1

P =

(
1
3

0 0
0 1

3
1
3

)

• “Most efficient way of transporting a mass
distribution to another” [Peyré and Cuturi, 2019].

• Finding the transport plan P minimizing a
transportation cost

min
P∈U

∑
ij

CijPij − εH(P),

with H(P) = −
∑

ij Pij(log(Pij)− 1), and U, the
space of admissible couplings.

• GPU-friendly [Sinkhorn and Knopp, 1967,
Cuturi and Doucet, 2013].
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Back to our problem

KOT(x, x
′) =

∑
i,j

Pij⟨xi , x′j⟩.

We cannot directly use KOT.

• KOT is not positive definite [Gardner et al., 2018].

• Observation:
Pz(x, x

′) := p × P(x, z)P(x′, z)⊤

is a valid transport plan between x′ and x [Peyré and Cuturi, 2019].

• Positive definite surrogate for KOT:

Kz(x, x
′) := ⟨Pz(x, x

′), κ(x, x′)⟩ = ⟨Φz(x),Φz(x
′)⟩,

with
Φz(x) =

√
p × P(x, z)⊤x.

[Mialon et al., 2021a]
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Core contribution: An optimal transport pooling

x1 x2 . . . xn

Φz(x)1 . . . Φz(x)p

P11 Pn1 P2p

Global, similarity-based pooling in p bins.

• To each bin corresponds a prototype (parameter)
zj ∈ Rd , j = 1 . . . p.

• Input: set or sequence x ∈ Rn×d .

• Output: Φz(x)j ∈ Rp×d

Φz(x)j =
n∑

i=1

Pijxi .

• z learned with or without supervision.

[Mialon et al., 2021a]
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Results

Results in various domains: Images, text, biological sequences.

SST-2 (70k paragraphs, classification): Classifying movie reviews in English into positive or negative.

Classification accuracies on validation set, averaged from 10 different runs (q references × p supports).

Method Unsupervised Supervised

[CLS] embedding [Devlin et al., 2019] 84.6±0.3 90.3±0.1
Mean Pooling of BERT features [Devlin et al., 2019] 85.3±0.4 90.8±0.1

Approximate Rep the Set [Skianis et al., 2020] Not available. 86.8±0.9
Rep the Set [Skianis et al., 2020] Not available. 87.1±0.5
Set Transformer [Lee et al., 2019] Not available. 87.9±0.8

Ours (Unsupervised: 1× 300. Supervised: 4× 30) 86.8±0.3 88.1±0.8

[Mialon et al., 2021a]
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Results

SCOP 1.75 (20k sequences, classification): Predicting protein folding.

75

80

85

90

95

Top-1 accuracy on SCOP 1.75 (the higher the better)

ESM_small (Rives et al., 2019) RKN (Chen et al., 2019)
Ours ESM (Rives et al., 2019)

• ESM trained on 250M protein sequences!

[Mialon et al., 2021a]
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Outline

1 Introduction and approach of the thesis

2 Handling sets data with optimal transport embeddings [Mialon et al., 2021a]

3 Handling graph data with transformers neural networks [Mialon et al., 2021b]

4 Getting rid of useless data with safe sample screening [Mialon et al., 2020]

5 Conclusion and perspectives
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Graph data are an important research topic

A molecule of theobromin, or why
chocolate makes us feel good.

Graph data are very valuable...

• Molecules in chemoinformatics.

• Proteins in computational biology.

• Physical systems, e.g, particle
interaction.

...but delicate to exploit.

• Non-Euclidean structure.
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Success and current limits of neural networks for graphs

A molecule of theobromin, or why
chocolate makes us feel good.

Graph neural networks [Gori et al., 2005, Scarselli et al., 2008]
(GNNs), very active research topic.

• Direct connections between neighboring nodes only.

• Success of GNNs (Molecules [Duvenaud et al., 2015], physical
systems [Battaglia et al., 2016], materials [Xie et al., 2021]).

• Current limitations of GNNs
([Li et al., 2018, Alon and Yahav, 2021]).

Let us connect all the nodes!
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Transformers for graph are tempting but not straightforward

Image transformer (from [Dosovitskiy et al., 2021]).
Input: image seen as a set of patches.

Output: class label.

Success of transformers [Vaswani et al., 2017].

• Text [Devlin et al., 2019],
Proteins [Rives et al., 2019],
Images [Dosovitskiy et al., 2021].

• Rarely used for graphs.

A nice inductive bias for graphs?

• All input elements communicate...

• ...but model blind to the input structure.

• Hence, position encoding often required.

How to provide information on the structure of the graphs?
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Our contribution: GraphiT, encoding graph structure in transformers
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Layer 1

Diffusion kernel between the nodes of a
Mutagenicity sample graph (β = 1).

We propose two mechanisms:

• Modulating attention with kernels on the
graph [Tsai et al., 2019, Kondor and Vert, 2004].

• Encoding local neighborhood of each
node [Chen et al., 2020].

• Possible to encode edge features in both
mechanisms.

[Mialon et al., 2021b]
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GraphiT is able to outperform popular GNNs

ZINC (12k graphs, regression): Predicting the constrained differential solubility of molecules.
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Mean Squared Error on ZINC (the lower the better)

Vanilla 
transformer (no 
edge features)
GT (Dwivedi & 
Bresson, 2021)
GatedGCN 
(Bresson & 
Laurent, 2017)
GraphiT (no edge 
features)
PNA (Corso et al., 
2020)
GraphiT

[Mialon et al., 2021b]
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GraphiT captures meaningful interactions

Mutagenicity: 4k samples (binary classification).
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Left: A molecule from the Mutagenicity data set [Kersting et al., 2016]. Right: nodes 8 (N of NO2) is salient. NO2 group
is known for its mutagenetic properties. The attention scores are averaged by heads.

[Mialon et al., 2021b]
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Outline

1 Introduction and approach of the thesis

2 Handling sets data with optimal transport embeddings [Mialon et al., 2021a]

3 Handling graph data with transformers neural networks [Mialon et al., 2021b]

4 Getting rid of useless data with safe sample screening [Mialon et al., 2020]

5 Conclusion and perspectives
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Safe sample screening

Self-driving cars critically need to detect anomalies.

Why getting rid of data?

• To detect anomalies.

• To accelerate solvers.

• Because it is interesting.

Context:

• Convex problems.

• Rich literature for feature screening
[Ghaoui et al., 2010, Fercoq et al., 2015,
Massias et al., 2018].
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A simple observation

Empirical risk minimization problem:

min
x∈Rp ,t∈Rn

1

n

n∑
i=1

f (ti ) + λR(x)

s.t t = diag(b)Ax ,

with f a convex loss and t = bix
⊤ai (classification).

Dual problem:

max
ν∈Rn

D(ν) =
1

n

n∑
i=1

−f ∗i (νi )− λR∗
(
−ATν

λn

)
.

At the optimum, x⋆ = −A⊤ν⋆

λn
, with x⋆ and ν⋆ resp. the optimal primal and dual variables.

Lemma (Safe loss and dual sparsity)

Consider the primal dual problems above. We have for all i = 1, . . . , n, ν⋆
i ∈ ∂fi (a

⊤
i x

⋆).
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A simple observation

Empirical risk minimization problem:

min
x∈Rp ,t∈Rn

1

n

n∑
i=1

f (ti ) + λR(x)

s.t t = diag(b)Ax ,

with f a convex loss and t = bix
⊤ai (classification).

Dual problem:
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ν∈Rn
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1

n
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A simple observation

0000

f (t) = max(µ− t, 0)

g(t) = log(1 + exp(−t))

tµ

• The sparsity of the dual solution is related to loss functions that have flat regions:

ν⋆
i ∈ ∂fi (a

⊤
i x

⋆).

• Consider X such that it contains x⋆.
• If for a given sample ai and every x ∈ X we are beyond µ, we can delete the sample.
• Sample screening rule:

min
x∈X

bia
⊤
i x > µ?
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Core contribution: A generic algorithm for finding a region containing x⋆

Ellipsoid method [Nemirovskii and Yudin, 1979].

g ∈ −∂f (xk)

xk

Ek
Ek+1

One step of the ellipsoid method.

Why ellipsoid method?

• Ellipsoidal region X enables a closed-form test.

• Does not require strong convexity.

[Mialon et al., 2020]
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Core contribution: A generic algorithm for finding a region containing x⋆

Method Strongly convex Non strongly convex Generic

Pathwise SVM [Ogawa et al., 2013] ✓ ✗ ✗
Duality Gap [Shibagaki et al., 2016] ✓ ✗ ✓
Ellipsoid (Ours) ✓ ✓ ✓

Perspectives:

• With ellipsoid method, finding a good test region is often as costly as solving the problem.

• Preferred use case: warm start, or within a solver [Fercoq et al., 2015].

[Mialon et al., 2020]
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Outline

1 Introduction and approach of the thesis

2 Handling sets data with optimal transport embeddings [Mialon et al., 2021a]

3 Handling graph data with transformers neural networks [Mialon et al., 2021b]

4 Getting rid of useless data with safe sample screening [Mialon et al., 2020]

5 Conclusion and perspectives
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Conclusion

1 - Optimal transport embedding [Mialon et al., 2021a]

• Handling long sequences with few data.

• New pooling mechanism connected to a recent line of work on transformers.

2 - GraphiT [Mialon et al., 2021b]

• Inductive bias of transformers is valid for graphs.

• Promising interpretation capabilities.

Are inductive biases still useful?

• Difficult to rival with huge pre-trained models, but pre-training is not always possible.

• AlphaFold2 [Jumper et al., 2021]: physically motivated inductive biases.

3 - Safe sample screening [Mialon et al., 2020]

• Better understanding of screening rules.
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Perspectives

Further work

• Optimal transport embedding: Further theoretical study needed.

• GraphiT: Transformers vs/with GNNs for graphs.

• Both: application in fundamental science.

Drug design, a potential application of ML on sequences and graphs?
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Perspectives

Further work

• Sample screening: Application in differential privacy?

Recipe: Huge models + huge data + learning problem + optimization algorithm + computing power

Seek progress elsewhere? Inductive biases can be found in learning paradigms...

• Data augmentation and loss in self-supervised
learning [He et al., 2020, Caron et al., 2020, Grill et al., 2020, Zbontar et al., 2021].
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Collaborators
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Thank you!
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What about pre-trained models?

During ICLR rebuttal...

• ESM [Rives et al., 2019], a transformer
protein language model trained on
250M protein sequences.

• Train a linear layer on top of ESM
features.

75

80

85

90

95

100

Top-1 accuracy on SCOP 1.75

ESM (small) + mean pooling ESM (small) + our pooling
Ours ESM + mean pooling ESM + our pooling
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Kernels on graphs

Laplacian based kernels [Smola and Kondor, 2003].

• Rich family of p.d. kernels on the graph by applying regularization function r to the spectrum of L

Kr =
m∑
i=1

r(λi )uiu
⊤
i .

• Associated with the norm ∥f ∥2r =
∑m

i=1 (f
⊤
i ui )

2/r(λi ) from a reproducing kernel Hilbert space (RKHS),
where r : R 7→ R+

∗ is a non-increasing function such that smoother functions on the graph would have
smaller norms in the RKHS.
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A famous kernel on graphs: the diffusion kernel

Diffusion Kernel [Kondor and Vert, 2004].

• When r(λi ) = e−βλi ,

KD =
m∑
i=1

e−βλi uiu
⊤
i = e−βL = lim

p→+∞

(
I − β

p
L

)p

.

• Physical interpretation: diffusion of a substance in the graph, controlled by β.

• Discrete equivalent of the Gaussian kernel, a solution to the heat equation in the continuous setting.
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Safe algorithm

Algorithm 1 Building ellipsoidal test regions

1: initialization: Given E0(x0,E0) containing x⋆;
2: while k < nbsteps do
3: • Compute a gradient g of the objective in xk ;
4: • g̃ ← g/

√
gTEkg ;

5: • xk+1 ← xk − 1
p+1

Ek g̃ ;

6: • Ek+1 ← p2

p2−1
(Ek − 2

p+1
Ek g̃ g̃

TEk);

7: For classification problems:
8: for each sample ai in A do
9: if minbix

⊤ai ≥ µ for x ∈ Enbsteps then
10: Discard ai from A.
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Example of safe loss

Logistic loss: f (t) = log (1 + e−t) and Ω(x) = −x log (−x) + µ|x | for x ∈ [−1, 0]. We have Ω∗(y) = −ey+µ−1.
Convolving Ω∗ with f yields

fµ(x) =

{
ex+µ−1 − (x + µ) if x + µ− 1 ≤ 0,

0 otherwise.

Smooth and asymptotically robust. The entropic part of Ω makes this penalty strongly convex hence fµ is
smooth [Nesterov, 2005]. Finally, the ℓ1 penalty ensures that the dual is sparse thus making the screening usable.

f(t)

fµ(t)

µ=0.6
µ=0.1

Safe logistic loss.

G. Mialon (Inria Sierra, Inria Thoth) Inductive Biases for Machine Learning in Data Constrained Settings PhD defense. January 19, 2022 45 / 45


	Introduction and approach of the thesis
	Handling sets data with optimal transport embeddings Mialon et al., 2021a
	Handling graph data with transformers neural networks Mialon et al., 2021b
	Getting rid of useless data with safe sample screening Mialon et al., 2020
	Conclusion and perspectives

