Screening Data Points in Empirical Risk Minimization

Grégoire Mialon

Inria Paris

Gatsby Unit, December 16, 2019

Grégoire Mialon (Inria Paris)

Publication

Julien Mairal

Alexandre d'Aspremont

• G. Mialon, A. d'Aspremont, J. Mairal : Screening Data Points in Empirical Risk Minimization via Ellipsoidal Regions and Safe Loss Functions preprint arXiv:1912.02566. 2019.

Grégoire Mialon (Inria Paris)

Context

- To screen := To automatically discard useless variables before running an optimization algorithm.
- Seminal work by [El Ghaoui et al., 2010] for the Lasso. From KKT conditions, if a dual optimal variable satisfies a given inequality constraint, the corresponding primal optimal variable must be zero. Check this on a set which contains the optimal dual variable.
- Applications : memory gains ; dynamic rules [Fercoq et al., 2015] (screening performed as the optimization algorithm proceeds) speeding up convergence.
- Scarce litterature for sample screening.

Context

In supervised learning, the goal is to learn a prediction function h given labeled training data $(a_i, b_i)_{i=1,...,n}$ with $a_i \in \mathbb{R}^p$, and $b_i \in \mathbb{R}$:

$$\min_{h \in \mathcal{H}} \frac{1}{n} \sum_{\substack{i=1 \\ \text{Empirical risk, data fit}}}^{n} f_i(h(a_i), b_i) + \underbrace{\lambda R(h)}_{\text{Regularization}}$$

In most applications, convex and h is linear, i.e. $h(a_i) = x^{\top} a_i$ (in what follows, we do not use an intercept without loss of generality).

Grégoire Mialon (Inria Paris)

Context

By introducing the margin t by $t = x^{\top}a_i - b_i$ (regression) or $t = b_i x^{\top}a_i$ (classification), the problem becomes

$$\min_{x \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^{n} f_i(t) + \lambda R(x)$$

s.t $t = \operatorname{diag}(b)Ax$,

with

$$f(t) = \begin{cases} \max(1-t,0) & (\text{SVMs}) \\ \log(\exp^{-t}+1) & (\text{Logistic Regression}), \end{cases} R(x) = \begin{cases} \frac{1}{2} \|x\|_2^2 & \text{in general,} \\ \|x\|_1 & \text{for inducing sparsity,} \end{cases}$$

and many others...

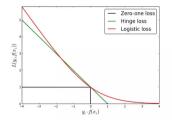
Grégoire Mialon (Inria Paris)

Margins

Definition (Safe loss function)

Let $\phi : \mathbb{R} \to \mathbb{R}$ be a continuous convex loss function such that $\inf_{t \in \mathbb{R}} \phi(t) = 0$. We say that ϕ is a safe loss if there exists a non-singleton and non-empty interval $\mathcal{I} \subset \mathbb{R}$ such that

$$t\in \mathcal{I}\implies \phi(t)=0.$$



The Hinge loss admits a flat area while the Logistic loss does not.

Grégoire Mialon (Inria Paris)

Safe screening rule for data points

Theorem (Safe rules for data points)

For a loss having a flat region \mathcal{I} , consider a subset \mathcal{X} containing the optimal solution x^* . If, for a given data point (a_i, b_i) , the margin $t \in \mathring{\mathcal{I}}$ for all x in \mathcal{X} , where $\mathring{\mathcal{I}}$ is the interior of \mathcal{I} , then this data point can be discarded from the dataset.

We assume that there exists $\mu > 0$ such that $\mathcal{I} = [-\mu, \mu]$ for safe regression losses and $\mathcal{I} = [\mu, +\infty)$ for classification.

Consequence: If $\max_{x \in \mathcal{X}} |a_i^\top x - b_i| < \mu$ (regression) or $\min_{x \in \mathcal{X}} b_i a_i^\top x > \mu$ (classification), with \mathcal{X} a set which is known to contain x^* , then a_i can be discarded from the data set A (or "screened").

Grégoire Mialon (Inria Paris)

Losses with a flat area and dual sparsity

A dual problem (obtained from Lagrange duality) to the ERM above is

$$\max_{\nu \in \mathbb{R}^n} D(\nu) = \frac{1}{n} \sum_{i=1}^n -f_i^*(\nu_i) - \lambda R^*\left(-\frac{A^T \nu}{\lambda n}\right).$$

Lemma (Safe loss and dual sparsity)

Consider the primal dual problems above. Denoting by x^* and ν^* the optimal primal and dual variables respectively, we have for all i = 1, ..., n,

$$\nu_i^{\star} \in \partial f_i(a_i^{\top} x^{\star}).$$

Consequence: For both classification and regression, the sparsity of the dual solution is related to loss functions that have flat regions.

Grégoire Mialon (Inria Paris)

Proof

We consider the dual problem (obtained from Lagrange duality)

$$\max_{\nu\in\mathbb{R}^n} D(\nu) = \frac{1}{n} \sum_{i=1}^n -f_i^*(\nu_i) - \lambda R^*\left(-\frac{A^T\nu}{\lambda n}\right).$$

We always have $P(x) \ge D(\nu)$. Since there exists a pair (x, t) such that Ax = t (Slater's conditions), we have $P(x^*) = D(\nu^*)$ and $x^* = -\frac{A^\top \nu^*}{\lambda n}$ at the optimum.

From the definition of safe loss functions and assuming that $b_i a_i^\top x \in \mathring{\mathcal{I}}$, f_i is differentiable at $a_i^\top x^*$ with $\nu_i^* = f_i'(a_i^\top x^*) = 0$.

Grégoire Mialon (Inria Paris)

Question: How to find a good set ${\mathcal X}$?

Question: How to find a good set ${\mathcal X}$?

• It has to be small.

Grégoire Mialon (Inria Paris)

Question: How to find a good set ${\mathcal X}$?

- It has to be small.
- It has to be tractable.

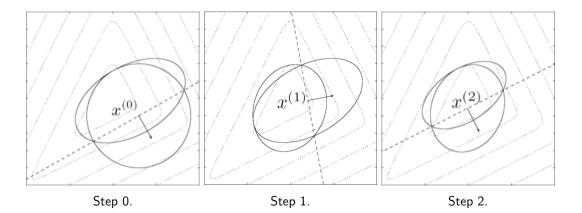
Question: How to find a good set \mathcal{X} ?

- It has to be small.
- It has to be tractable.

 $\min_{x \in \mathcal{X}} b_i a_i^\top x \text{ and } \max_{x \in \mathcal{X}} |a_i^\top x - b_i| \text{ are closed form when } \mathcal{X} \text{ is an ellipsoid!}$

Grégoire Mialon (Inria Paris)

Finding \mathcal{X} : Ellipsoid Method (Nemirovski and Yudin, 1976)



Grégoire Mialon (Inria Paris)

Screening Data Points in Empirical Risk Minimization

Gatsby Unit, December 16, 2019 12 / 24

Wrapping up

$\label{eq:algorithm 1} \textbf{Algorithm 1} \text{ Building ellipsoidal test regions}$

1: initialization: Given $\mathcal{E}^0(x_0, E_0)$ containing x^* : 2: while $k < nb_{\text{steps}}$ do • Compute a gradient g of obj in x_k ; 3: 4: $\tilde{g} \leftarrow g/\sqrt{g^T E_k g}$: • $x_{k+1} \leftarrow x_k - \frac{1}{n+1} E_k \tilde{g};$ 5: • $E_{k+1} \leftarrow \frac{p^2}{p^2-1} (E_k - \frac{2}{p+1} E_k \tilde{g} \tilde{g}^T E_k);$ 6: 7: For classification problems: for each sample a; in A do 8: if min $b_i x^{\top} a_i > \mu$ for $x \in \mathcal{E}^{nb_{\text{steps}}}$ then 9: Discard a; from A. 10:

Comparison to other safe regions

- [Ogawa et al., 2013] : pathwise computation properties of SVM.
- [Shibagaki et al., 2016] : when the objective is strongly convex, $x^* \in \mathcal{B}(x, \frac{2\Delta(x)}{\lambda})$ with x a current iterate and $\Delta(x)$ a duality gap of the problem.

	Strongly convex	Non strongly convex	Generic
Pathwise SVM	1	×	X
Duality Gap	1	×	1
Ellipsoid	1	✓	1

State of the art for sample screening

When the ERM problem does not admit a sparse dual solution, safe screening is not possible.

Definition (Infimum convolution)

Let $f : \mathbb{R}^p \to \mathbb{R} \cup \{-\infty, +\infty\}$ be an extended real-valued function and Ω a convex term. Let f_{μ} be defined as

$$f_{\mu} = \min_{z \in \mathbb{R}^p} f(z) + \mu \Omega^* \left(\frac{t-z}{\mu} \right).$$
 (1)

 f_{μ} is called the infimum convolution of f and Ω^* , which may be written as $f \square \Omega^*$.

Note that f_{μ} is convex as the minimum of a convex function in (t, z). We recover the Moreau-Yosida smoothing [Moreau, 1962, Yosida, 1980] and its generalization when Ω is respectively a quadratic term or a strongly-convex term [Nesterov, 2005].

Lemma (Regularized dual for classification)

Consider the modified classification problem

$$\min_{x \in \mathbb{R}^{p}, t \in \mathbb{R}^{n}} f_{\mu}(t) + \lambda R(x) \quad \text{s.t.} \quad t = \text{diag}(b)Ax. \tag{\mathcal{P}_{2}'}$$

The dual of \mathcal{P}'_2 is

$$\max_{\nu \in \mathbb{R}^n} -f^*(-\nu) - \lambda R^* \left(\frac{A^T \operatorname{diag}(b)\nu}{\lambda}\right) - \mu \Omega(-\nu).$$
(2)

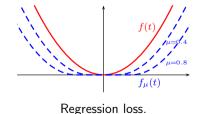
It will be possible, in many cases, to induce sparsity in the dual if Ω is the ℓ_1 -norm, or another sparsity-inducing penalty.

Grégoire Mialon (Inria Paris)

Quadratic loss $f : t \mapsto ||t||^2/2$ and $\Omega(x) = ||x||_1$. Then $\Omega^*(y) = \mathbf{1}_{||y||_{\infty} \le 1}$ (see *e.g.* [Bach et al., 2012]), and

$$f_{\mu}(t) = \sum_{i=1}^{n} \frac{1}{2} [|t_i| - \mu]_+^2. \tag{3}$$

The parameter μ encourages the loss to be flat (it is exactly 0 when $||t||_{\infty} \leq \mu$).



Grégoire Mialon (Inria Paris)

Screening Data Points in Empirical Risk Minimization

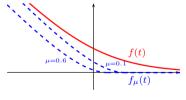
Gatsby Unit, December 16, 2019 17 / 24

Logistic loss $f(t) = \log (1 + e^{-t})$ and $\Omega(x) = -x \log (-x) + \mu |x|$ for $x \in [-1, 0]$. We have $\Omega^*(y) = -e^{y+\mu-1}$. Convolving Ω^* with f yields

$$f_{\mu}(x) = \begin{cases} e^{x+\mu-1} - (x+\mu) & \text{if } x+\mu-1 \leq 0, \\ 0 & \text{otherwise.} \end{cases}$$

$$\tag{4}$$

Smooth and asymptotically robust.



Classification loss.

Grégoire Mialon (Inria Paris)

Experiments

- In many datasets, there are a lot of samples to screen.
- *MNIST* (n = 60,000) and *SVHN* (n = 604,388) both represent digits, encoded by using the output of a two-layer convolutional kernel network [Mairal, 2016] leading to feature dimensions p = 2304. *RCV-1* (n = 781,265) represents sparse TF-IDF vectors of categorized newswire stories (p = 47,236).

Dataset	MNIST	SVHN	RCV-1
$\lambda = 10^{-3}$	0 %	2 %	12 %
$\lambda = 10^{-4}$	27 %	17 %	42 %
$\lambda = 10^{-5}$	65 %	54 %	75 %

Table: Percentage of samples that can be discarded for problems trained with an ℓ_1 -Safe Logistic loss.

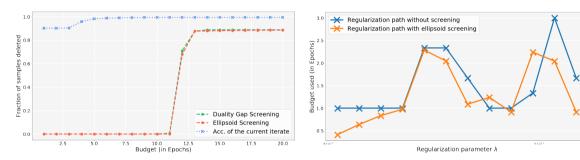
Experiments

Dataset	MNIST	SVHN
$\lambda = 1.0$	89 / 89	87 / 87
$\lambda = 10^{-1}$	95 / 95	91 / 91
$\lambda = 10^{-2}$	98 / 98	90 / 92
$\lambda = 10^{-3}$	34 / 50	0 / 0

Dataset	RCV-1	
$\lambda = 1$	85 / 85	
$\lambda = 10$	80 / 80	
$\lambda = 100$	68 / 68	

Percentage of samples screened in an ℓ_2 penalized SVM with Squared Hinge loss (Ellipsoid (ours) / Duality Gap) given the epochs made at initialization.

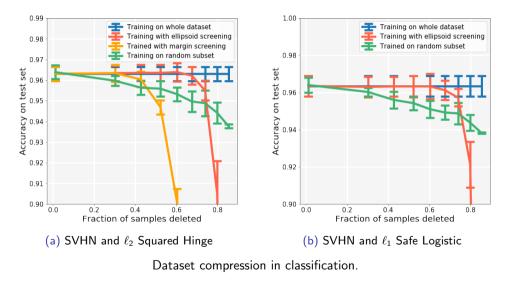
Experiments



Fraction of samples discarded vs Epochs done for two screening strategies along with test accuracy of the current iterate (ℓ_2 -Squared Hinge, MNIST).

Regularization path of a Squared Hinge SVM trained on MNIST. Screening enables computational gains.

Experiments (Proof of concept)



Grégoire Mialon (Inria Paris)

References I

Bach, F., Jenatton, R., Mairal, J., Obozinski, G., et al. (2012). Optimization with sparsity-inducing penalties. *Foundations and Trends in Machine Learning*, 4(1):1–106.

El Ghaoui, L., Viallon, V., and Rabbani, T. (2010). Safe Feature Elimination for the LASSO and Sparse Supervised Learning Problems. *arXiv e-prints*, page arXiv:1009.4219.

Fercoq, O., Gramfort, A., and Salmon, J. (2015). Mind the duality gap: safer rules for the Lasso. In *International Conference on Machine Learning (ICML)*.

Mairal, J. (2016). End-to-end kernel learning with supervised convolutional kernel networks. In *Advance in Neural Information Processing Systems (NIPS)*.

Moreau, J.-J. (1962). Fonctions convexes duales et points proximaux dans un espace hilbertien. *CR Acad. Sci. Paris Sér. A MAth.*

Nesterov, Y. (2005). Smooth minimization of non-smooth functions. *Mathematical Programming*, 103(1):127–152.

References II

Ogawa, K., Suzuki, Y., and Takeuchi, I. (2013). Safe screening of non-support vectors in pathwise svm computation. In *International Conference on Machine Learning (ICML)*.

Shibagaki, A., Karasuyama, M., Hatano, K., and Takeuchi, I. (2016). Simultaneous Safe Screening of Features and Samples in Doubly Sparse Modeling. In *International Conference on Machine Learning (ICML)*.

Yosida, K. (1980). Functional analysis. Berlin-Heidelberg.