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Context

To screen := To automatically discard useless variables before running an optimization
algorithm.

Seminal work by [El Ghaoui et al., 2010] for the Lasso. From KKT conditions, if a dual
optimal variable satisfies a given inequality constraint, the corresponding primal optimal
variable must be zero. Check this on a set which contains the optimal dual variable.

Applications : memory gains ; dynamic rules [Fercoq et al., 2015] (screening performed as
the optimization algorithm proceeds) speeding up convergence.

Scarce litterature for sample screening.
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Context

In supervised learning, the goal is to learn a prediction function h given labeled training data
(ai , bi )i=1,...,n with ai ∈ Rp, and bi ∈ R:

min
h∈H

1

n

n∑
i=1

fi (h(ai ), bi )︸ ︷︷ ︸
Empirical risk, data fit

+ λR(h)︸ ︷︷ ︸
Regularization

.

In most applications, convex and h is linear, i.e. h(ai ) = x>ai (in what follows, we do not use
an intercept without loss of generality).
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Context

By introducing the margin t by t = x>ai − bi (regression) or t = bix
>ai (classification), the

problem becomes

min
x∈R

1

n

n∑
i=1

fi (t) + λR(x)

s.t t = diag(b)Ax ,

with

f (t) =

{
max (1− t, 0) (SVMs)
log (exp−t +1) (Logistic Regression),

R(x) =

{
1
2‖x‖

2
2 in general,

‖x‖1 for inducing sparsity,

and many others...
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Margins

Definition (Safe loss function)

Let φ : R→ R be a continuous convex loss function such that inft∈R φ(t) = 0. We say that φ
is a safe loss if there exists a non-singleton and non-empty interval I ⊂ R such that

t ∈ I =⇒ φ(t) = 0.

The Hinge loss admits a flat area while the Logistic loss does not.
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Safe screening rule for data points

Theorem (Safe rules for data points)

For a loss having a flat region I, consider a subset X containing the optimal solution x?. If,
for a given data point (ai , bi ), the margin t ∈ I̊ for all x in X , where I̊ is the interior of I,
then this data point can be discarded from the dataset.

We assume that there exists µ > 0 such that I = [−µ, µ] for safe regression losses and
I = [µ,+∞) for classification.

Consequence: If max
x∈X
|a>i x − bi | < µ (regression) or min

x∈X
bia
>
i x > µ (classification), with X a

set which is known to contain x?, then ai can be discarded from the data set A (or
“screened”).
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Losses with a flat area and dual sparsity

A dual problem (obtained from Lagrange duality) to the ERM above is

max
ν∈Rn

D(ν) =
1

n

n∑
i=1

−f ∗i (νi )− λR∗
(
−ATν

λn

)
.

Lemma (Safe loss and dual sparsity)

Consider the primal dual problems above. Denoting by x? and ν? the optimal primal and dual
variables respectively, we have for all i = 1, . . . , n,

ν?i ∈ ∂fi (a>i x?).

Consequence: For both classification and regression, the sparsity of the dual solution is
related to loss functions that have flat regions.
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Proof

We consider the dual problem (obtained from Lagrange duality)

max
ν∈Rn

D(ν) =
1

n

n∑
i=1

−f ∗i (νi )− λR∗
(
−ATν

λn

)
.

We always have P(x) ≥ D(ν). Since there exists a pair (x , t) such that Ax = t (Slater’s

conditions), we have P(x?) = D(ν?) and x? = −A>ν?

λn at the optimum.

From the definition of safe loss functions and assuming that bia
>
i x ∈ I̊, fi is differentiable at

a>i x
? with ν?i = f ′i (a>i x

?) = 0.
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Safe screening rule

Question: How to find a good set X ?

It has to be small.

It has to be tractable.
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Safe screening rule

Question: How to find a good set X ?

It has to be small.

It has to be tractable.

min
x∈X

bia
>
i x and max

x∈X
|a>i x − bi | are closed form when X is an ellipsoid!
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Finding X : Ellipsoid Method (Nemirovski and Yudin, 1976)

Step 0. Step 1. Step 2.
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Wrapping up

Algorithm 1 Building ellipsoidal test regions

1: initialization: Given E0(x0,E0) containing x?;
2: while k < nbsteps do
3: • Compute a gradient g of obj in xk ;
4: • g̃ ← g/

√
gTEkg ;

5: • xk+1 ← xk − 1
p+1Ek g̃ ;

6: • Ek+1 ← p2

p2−1
(Ek − 2

p+1Ek g̃ g̃
TEk);

7: For classification problems:
8: for each sample ai in A do
9: if minbix

>ai ≥ µ for x ∈ Enbsteps then
10: Discard ai from A.
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Comparison to other safe regions

[Ogawa et al., 2013] : pathwise computation properties of SVM.

[Shibagaki et al., 2016] : when the objective is strongly convex, x? ∈ B(x , 2∆(x)
λ ) with x a

current iterate and ∆(x) a duality gap of the problem.

Strongly convex Non strongly convex Generic

Pathwise SVM 3 7 7

Duality Gap 3 7 3

Ellipsoid 3 3 3

State of the art for sample screening
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Building safe losses

When the ERM problem does not admit a sparse dual solution, safe screening is not possible.

Definition (Infimum convolution)

Let f : Rp → R ∪ {−∞,+∞} be an extended real-valued function and Ω a convex term. Let
fµ be defined as

fµ = min
z∈Rp

f (z) + µΩ∗
(
t − z

µ

)
. (1)

fµ is called the infimum convolution of f and Ω∗, which may be written as f � Ω∗.

Note that fµ is convex as the minimum of a convex function in (t, z). We recover the
Moreau-Yosida smoothing [Moreau, 1962, Yosida, 1980] and its generalization when Ω is
respectively a quadratic term or a strongly-convex term [Nesterov, 2005].
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Building safe losses

Lemma (Regularized dual for classification)

Consider the modified classification problem

min
x∈Rp ,t∈Rn

fµ(t) + λR(x) s.t. t = diag(b)Ax . (P ′2)

The dual of P ′2 is

max
ν∈Rn
−f ∗(−ν)− λR∗

(
AT diag(b)ν

λ

)
− µΩ(−ν). (2)

It will be possible, in many cases, to induce sparsity in the dual if Ω is the `1-norm, or another
sparsity-inducing penalty.
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Building safe losses

Quadratic loss f : t 7→ ‖t‖2/2 and Ω(x) = ‖x‖1. Then Ω∗(y) = 1‖y‖∞≤1 (see
e.g. [Bach et al., 2012]), and

fµ(t) =
n∑

i=1

1

2
[|ti | − µ]2+. (3)

The parameter µ encourages the loss to be flat (it is exactly 0 when ‖t‖∞ ≤ µ).

f(t)

fµ(t)

µ=0.8

µ=0.4

Regression loss.

Grégoire Mialon (Inria Paris) Screening Data Points in Empirical Risk Minimization Gatsby Unit, December 16, 2019 17 / 24



Building safe losses

Logistic loss f (t) = log (1 + e−t) and Ω(x) = −x log (−x) + µ|x | for x ∈ [−1, 0]. We have
Ω∗(y) = −ey+µ−1. Convolving Ω∗ with f yields

fµ(x) =

{
ex+µ−1 − (x + µ) if x + µ− 1 ≤ 0,

0 otherwise.
(4)

Smooth and asymptotically robust.

f(t)

fµ(t)

µ=0.6
µ=0.1

Classification loss.
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Experiments

In many datasets, there are a lot of samples to screen.

MNIST (n = 60,000) and SVHN (n = 604,388) both represent digits, encoded by using
the output of a two-layer convolutional kernel network [Mairal, 2016] leading to feature
dimensions p = 2304. RCV-1 (n = 781,265) represents sparse TF-IDF vectors of
categorized newswire stories (p = 47,236).

Dataset MNIST SVHN RCV-1

λ = 10−3 0 % 2 % 12 %
λ = 10−4 27 % 17 % 42 %
λ = 10−5 65 % 54 % 75 %

Table: Percentage of samples that can be discarded for problems trained with an `1-Safe Logistic loss.
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Experiments

Dataset MNIST SVHN

λ = 1.0 89 / 89 87 / 87
λ = 10−1 95 / 95 91 / 91
λ = 10−2 98 / 98 90 / 92
λ = 10−3 34 / 50 0 / 0

Dataset RCV-1

λ = 1 85 / 85
λ = 10 80 / 80
λ = 100 68 / 68

Percentage of samples screened in an `2 penalized SVM with Squared Hinge loss (Ellipsoid (ours) /
Duality Gap) given the epochs made at initialization.
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Experiments

Fraction of samples discarded vs Epochs done for
two screening strategies along with test accuracy
of the current iterate (`2-Squared Hinge, MNIST).

Regularization path of a Squared Hinge SVM
trained on MNIST. Screening enables
computational gains.
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Experiments (Proof of concept)

(a) SVHN and `2 Squared Hinge (b) SVHN and `1 Safe Logistic

Dataset compression in classification.

Grégoire Mialon (Inria Paris) Screening Data Points in Empirical Risk Minimization Gatsby Unit, December 16, 2019 22 / 24



References I

Bach, F., Jenatton, R., Mairal, J., Obozinski, G., et al. (2012). Optimization with
sparsity-inducing penalties. Foundations and Trends in Machine Learning, 4(1):1–106.

El Ghaoui, L., Viallon, V., and Rabbani, T. (2010). Safe Feature Elimination for the LASSO
and Sparse Supervised Learning Problems. arXiv e-prints, page arXiv:1009.4219.

Fercoq, O., Gramfort, A., and Salmon, J. (2015). Mind the duality gap: safer rules for the
Lasso. In International Conference on Machine Learning (ICML).

Mairal, J. (2016). End-to-end kernel learning with supervised convolutional kernel networks.
In Advance in Neural Information Processing Systems (NIPS).

Moreau, J.-J. (1962). Fonctions convexes duales et points proximaux dans un espace
hilbertien. CR Acad. Sci. Paris Sér. A MAth.

Nesterov, Y. (2005). Smooth minimization of non-smooth functions. Mathematical
Programming, 103(1):127–152.
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